Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

A group theoretic proof of a compactness lemma and existence of nonradial solutions for semilinear elliptic equations

Texto completo
Autor(es):
Biliotti, Leonardo [1] ; Siciliano, Gaetano [2]
Número total de Autores: 2
Afiliação do(s) autor(es):
[1] Univ Parma, Dipartimento Sci Matemat Fis & Informat, Parco Area Sci 53-A, I-43124 Parma - Italy
[2] Univ Sao Paulo, Dept Matemat, Inst Matemat & Estat, Rua Matao 1010, BR-05508090 Sao Paulo - Brazil
Número total de Afiliações: 2
Tipo de documento: Artigo Científico
Fonte: Annali di Matematica Pura ed Applicata; v. 200, n. 2 JUL 2020.
Citações Web of Science: 0
Resumo

Symmetry plays a basic role in variational problems (settled, e.g., in R-n or in a more general manifold), for example, to deal with the lack of compactness which naturally appears when the problem is invariant under the action of a noncompact group. In R-n, a compactness result for invariant functions with respect to a subgroup G of O(n) has been proved under the condition that the G action on R-n is compatible, see Willem (Minimax theorem. Progress in nonlinear differential equations and their applications, vol 24, Birkhauser Boston Inc., Boston, 1996). As a first result, we generalize this and show here that the compactness is recovered for particular subgroups of the isometry group of a Riemannian manifold. We investigate also isometric action on Hadamard manifold (M, g) proving that a large class of subgroups of Iso(M, g) is compatible. As an application, we get a compactness result for ``invariant{''} functions which allows us to prove the existence of nonradial solutions for a classical scalar equation and for a nonlocal fractional equation on R-n for n = 3 and n = 5, improving some results known in the literature. Finally, we prove the existence of nonradial invariant functions such that a compactness result holds for some symmetric spaces of noncompact type. (AU)

Processo FAPESP: 18/17264-4 - Existência de soluções para equações elípticas não-lineares
Beneficiário:Gaetano Siciliano
Modalidade de apoio: Auxílio à Pesquisa - Regular