Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Sentiment Analysis Applied to Analyze Society's Emotion in Two Different Context of Social Media Data

Texto completo
Autor(es):
Ibanez, Marilyn Minicucci [1, 2] ; Rosa, Reinaldo Roberto [1, 3] ; Guimardes, Lamartine N. F. [1, 4, 5]
Número total de Autores: 3
Afiliação do(s) autor(es):
[1] Natl Inst Space Res, Appl Comp Grad Program CAP, BR-12227010 Sao Jose Dos Campos, SP - Brazil
[2] Fed Inst Sao Paulo IFSP SJC, BR-12223201 Sao Jose Dos Campos, SP - Brazil
[3] Natl Inst Space Res, Lab Comp & Appl Math LABAC, BR-12227010 Sao Jose Dos Campos, SP - Brazil
[4] Inst Adv Studies IEAv, Nucl Energy Div ENU, BR-12228001 Sao Jose Dos Campos, SP - Brazil
[5] Inst Tecnol Aeronaut ITA, Space & Technol Sci Grad Program PG CTE, BR-12228900 Sao Jose Dos Campos, SP - Brazil
Número total de Afiliações: 5
Tipo de documento: Artigo Científico
Fonte: INTELIGENCIA ARTIFICIAL-IBEROAMERICAL JOURNAL OF ARTIFICIAL INTELLIGENCE; v. 23, n. 66, p. 66-84, DEC 2020.
Citações Web of Science: 0
Resumo

In the last few decades, the growth in the use of the Internet has generated a substantial increase in the circulation of information on social media. Due to the high interest of several areas of society in the analysis of these data, a study of better techniques for the manipulation and understanding of this type of data is of great importance so that this enormous volume of information can be interpreted quickly and accurately. Based on this context, this study shows two approaches of sentiment analysis to verify the emotion of the population in different context. The first approach analyses the positive and negative sentiment about 2018 presidential elections in Brazil considering data from the Twitter social network. The second approach performs analysis of data from social media to identify threats sentiment level of armed conflicts considering data off the conflict between Syria and the USA in 2017. To achieve this goal, machine learning techniques such as auto-encoder and deep learning will be considered in conjunction with NLP text analysis techniques. The results obtained show the effectiveness of the approaches used in the classification of sentiment within the domains used according to the methodology developed for this work. (AU)

Processo FAPESP: 14/11156-4 - O que determina o crescimento da massa estelar de galáxias elípticas? Intrínseco ou ambiente: a saga contínua
Beneficiário:Reinaldo Ramos de Carvalho
Modalidade de apoio: Auxílio à Pesquisa - Temático