Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

On the behavior of Lagrange multipliers in convex and nonconvex infeasible interior point methods

Texto completo
Autor(es):
Haeser, Gabriel [1, 2] ; Hinder, Oliver [2] ; Ye, Yinyu [2]
Número total de Autores: 3
Afiliação do(s) autor(es):
[1] Univ Sao Paulo, Inst Math & Stat, Dept Appl Math, Sao Paulo, SP - Brazil
[2] Stanford Univ, Dept Management Sci & Engn, Stanford, CA 94305 - USA
Número total de Afiliações: 2
Tipo de documento: Artigo Científico
Fonte: MATHEMATICAL PROGRAMMING; v. 186, n. 1-2, p. 257-288, MAR 2021.
Citações Web of Science: 0
Resumo

We analyze sequences generated by interior point methods (IPMs) in convex and nonconvex settings. We prove that moving the primal feasibility at the same rate as the barrier parameter mu ensures the Lagrange multiplier sequence remains bounded, provided the limit point of the primal sequence has a Lagrange multiplier. This result does not require constraint qualifications. We also guarantee the IPM finds a solution satisfying strict complementarity if one exists. On the other hand, if the primal feasibility is reduced too slowly, then the algorithm converges to a point of minimal complementarity; if the primal feasibility is reduced too quickly and the set of Lagrange multipliers is unbounded, then the norm of the Lagrange multiplier tends to infinity. Our theory has important implications for the design of IPMs. Specifically, we show that IPOPT, an algorithm that does not carefully control primal feasibility has practical issues with the dual multipliers values growing to unnecessarily large values. Conversely, the one-phase IPM of Hinder and Ye (A one-phase interior point method for nonconvex optimization, 2018. arXiv:1801.03072), an algorithm that controls primal feasibility as our theory suggests, has no such issue. (AU)

Processo FAPESP: 16/02092-8 - Informação de segunda-ordem em otimização não linear
Beneficiário:Gabriel Haeser
Modalidade de apoio: Bolsas no Exterior - Pesquisa
Processo FAPESP: 13/05475-7 - Métodos computacionais de otimização
Beneficiário:Sandra Augusta Santos
Modalidade de apoio: Auxílio à Pesquisa - Temático