Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Improving data quality in liquid chromatography-mass spectrometry metabolomics of human urine

Texto completo
Autor(es):
Rossetto, Rosilene Cristina [1] ; Macedo, Adriana Nori de [2] ; da, Pedro Luis Rocha [1] ; Tedesco-Silva, Helio [3] ; Cardozo, Karina Helena Morais [4] ; Carvalho, Valdemir Melechco [4] ; Tavares, Marina Franco Maggi [1]
Número total de Autores: 7
Afiliação do(s) autor(es):
[1] Univ Sao Paulo, Inst Chem, Av Prof Lineu Prestes 748, Sao Paulo - Brazil
[2] Univ Fed Minas Gerais, Dept Chem, Av Antonio Carlos 6627, Belo Horizonte, MG - Brazil
[3] Univ Fed Sao Paulo, Hosp Rim, R Borges Lagoa 960, Sao Paulo - Brazil
[4] Fleury Grp, Div Res & Dev, Av Gen Valdomiro Lima 508, Sao Paulo - Brazil
Número total de Afiliações: 4
Tipo de documento: Artigo Científico
Fonte: Journal of Chromatography A; v. 1654, SEP 27 2021.
Citações Web of Science: 0
Resumo

A B S T R A C T Signal variation is a common drawback in untargeted metabolomics using liquid chromatography-mass spectrometry (LC-MS), mainly due to the complexity of biological matrices and reduced sample prepara-tion, which results in the accumulation of sample components in the column and the ion source. Here we propose a simple, easy to implement approach to improve data quality in untargeted metabolomics by LC-MS. This approach involves the use of a divert valve to direct the column effluent to waste at the be-ginning of the chromatographic run and during column cleanup and equilibration, in combination with longer column cleanups in between injections. Our approach was tested using urine samples collected from patients after renal transplantation. Analytical responses were contrasted before and after introduc-ing these modifications by analyzing a batch of untargeted metabolomics data. A significant improvement in peak area repeatability was observed for the quality controls, with relative standard deviations (RSDs) for several metabolites decreasing from-60% to-10% when our approach was introduced. Similarly, RSDs of peak areas for internal standards improved from-40% to-10%. Furthermore, calibrant solutions were more consistent after introducing these modifications when comparing peak areas of solutions in-jected at the beginning and the end of each analytical sequence. Therefore, we recommend the use of a divert valve and extended column cleanup as a powerful strategy to improve data quality in untar-geted metabolomics, especially for very complex types of samples where minimum sample preparation is required, such as in this untargeted metabolomics study with urine from renal transplanted patients. (c) 2021 Elsevier B.V. All rights reserved. (AU)

Processo FAPESP: 17/12149-0 - Expansão da cobertura metabólica utilizando cromatografia iônica acoplada à espectrometria de massas nos estudos metabolômicos de terapias imunossupressoras no transplante renal
Beneficiário:Adriana Nori de Macedo
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado
Processo FAPESP: 17/27059-6 - Expansão da cobertura metabólica utilizando cromatografia iônica acoplada à espectrometria de massas nos estudos metabolômicos de terapias imunossupressoras no transplante renal
Beneficiário:Marina Franco Maggi Tavares
Modalidade de apoio: Auxílio à Pesquisa - Regular