Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Codimension one distributions and stable rank 2 reflexive sheaves on threefolds

Texto completo
Autor(es):
Calvo-Andrade, Omegar [1] ; Correa, Mauricio [2] ; Jardim, Marcos [3]
Número total de Autores: 3
Afiliação do(s) autor(es):
[1] CIMAT, Ctr Invest Matemat, Ap Postal 402, Guanajuato 36000, Gto - Mexico
[2] ICEX UFMG, Dept Matemat, Av Antonio Carlos 6627, BR-31270901 Belo Horizonte, MG - Brazil
[3] IMECC UNICAMP, Dept Matemat, Rua Sergio Buarque Holanda 651, BR-13083970 Campinas, SP - Brazil
Número total de Afiliações: 3
Tipo de documento: Artigo Científico
Fonte: Anais da Academia Brasileira de Ciências; v. 93, n. 3 2021.
Citações Web of Science: 0
Resumo

We show that codimension one distributions with at most isolated singularities on certain smooth projective threefolds with Picard rank one have stable tangent sheaves. The ideas in the proof of this fact are then applied to the characterization of certain irreducible components of the moduli space of stable rank 2 reflexive sheaves on P3, and to the construction of stable rank 2 reflexive sheaves with prescribed Chern classes on general threefolds. We also prove that if G is a subfoliation of a codimension one distribution F with isolated singularities, then Sing (G) is a curve. As a consequence, we give a criterion to decide whether G is globally given as the intersection of F with another codimension one distribution. Turning our attention to codimension one distributions with non isolated singularities, we determine the number of connected components of the pure 1-dimensional component of the singular scheme. (AU)

Processo FAPESP: 18/21391-1 - Teoria de calibre e geometria algébrica
Beneficiário:Marcos Benevenuto Jardim
Modalidade de apoio: Auxílio à Pesquisa - Temático