Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Building Data Sets for Rainforest Deforestation Detection Through a Citizen Science Project

Texto completo
Autor(es):
Jordan Rojas Dallaqua, Fernanda Beatriz [1] ; Faria, Fabio Augusto [1] ; Fazenda, Alvaro Luiz [1]
Número total de Autores: 3
Afiliação do(s) autor(es):
[1] Univ Fed Sao Paulo, Inst Ciencia & Tecnol, BR-04021001 Sao Jose Dos Campos - Brazil
Número total de Afiliações: 1
Tipo de documento: Artigo Científico
Fonte: IEEE Geoscience and Remote Sensing Letters; v. 19, 2022.
Citações Web of Science: 0
Resumo

Originally, the ForestEyes project aims to detect deforestation in tropical forests based on citizen science (CS) and machine learning (ML) approaches, in which the volunteers analyze and label segments of remote sensing images to build new training sets for creating different classification models. In previous work, only three modules related to CS have been proposed. In this letter, two new modules are created: 1) organization and selection and 2) ML. Therefore, these modules turn the ForestEyes project a more robust system in the deforestation detection task, building high-confidence labeled collections, increasing the monitoring coverage, and decreasing volunteer dependence. Performed experiments show that volunteers create better data sets than those based on automatic PRODES-based approaches, selecting the most relevant samples and discarding noisy segments that might disrupt ML techniques. Finally, the results showed the feasibility of allying CS with ML for rainforest deforestation detection task. (AU)

Processo FAPESP: 14/50937-1 - INCT 2014: da Internet do Futuro
Beneficiário:Fabio Kon
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 15/24485-9 - Internet do futuro aplicada a cidades inteligentes
Beneficiário:Fabio Kon
Modalidade de apoio: Auxílio à Pesquisa - Temático