Busca avançada
Ano de início
Entree


Limit Cycles Bifurcating from a Periodic Annulus in Discontinuous Planar Piecewise Linear Hamiltonian Differential System with Three Zones

Texto completo
Autor(es):
Pessoa, Claudio ; Ribeiro, Ronisio
Número total de Autores: 2
Tipo de documento: Artigo Científico
Fonte: INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS; v. 32, n. 08, p. 16-pg., 2022-06-30.
Resumo

In this paper, we study the number of limit cycles that can bifurcate from a periodic annulus in a discontinuous planar piecewise linear Hamiltonian differential system with three zones separated by two parallel straight lines. We prove that if the central subsystem, i.e. the system defined between the two parallel lines, has a real center and the other subsystems have centers or saddles, then we have at least three limit cycles that appear after perturbations of the periodic annulus. For this, we study the number of zeros of a Melnikov function for piecewise Hamiltonian system and present a normal form for this system in order to simplify the computations. (AU)

Processo FAPESP: 19/10269-3 - Teorias ergódica e qualitativa dos sistemas dinâmicos II
Beneficiário:Claudio Aguinaldo Buzzi
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 18/19726-5 - Problema de Dulac e do Centro-Foco em Variedades Bidimensionais
Beneficiário:Cláudio Gomes Pessoa
Modalidade de apoio: Bolsas no Exterior - Pesquisa