Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Stabilizability and positiveness of solutions of the jump linear quadratic problem and the coupled algebraic Riccati equation

Texto completo
Autor(es):
Costa, E. F. ; Val, João Bosco Ribeiro do [2]
Número total de Autores: 2
Tipo de documento: Artigo Científico
Fonte: IEEE Transactions on Automatic Control; v. 50, n. 5, p. 691-695, 2005.
Área do conhecimento: Engenharias - Engenharia Elétrica
Assunto(s):Matemática   Teoria de sistemas e controle   Equações de Riccati
Resumo

This note addresses the jump linear quadratic problem of Markov jump linear systems and the associated algebraic Riccati equation. Necessary and sufficient conditions for stability of the optimal control and positiveness of Riccati solutions are developed. We show that the concept of weak detectability is not only a sufficient condition for the finiteness of cost functional to imply stability of the associated trajectory, but also a necessary one. This, together with a characterization developed here for the kernel of the Riccati solution, allows us to show that the control solution stabilizes the system if and only if the system is weakly detectable, and that the Riccati solution is positive-definite if and only if the system is weakly observable. The connection between the algebraic Riccati equation and the control problem is made, as far as the minimal positive-semidefinite solution for the algebraic Riccati equation is identified with the optimal solution of the linear quadratic problem. Illustrative numerical examples and comparisons are included. (AU)

Processo FAPESP: 03/06736-7 - Controle e filtragem de sistemas estocásticos markovianos com saltos nos parâmetros
Beneficiário:João Bosco Ribeiro do Val
Modalidade de apoio: Auxílio à Pesquisa - Temático