Busca avançada
Ano de início
Entree


Microscopic derivation of non-local models with anomalous diffusions from stochastic particle systems

Texto completo
Autor(es):
Simon, Marielle ; Olivera, Christian
Número total de Autores: 2
Tipo de documento: Artigo Científico
Fonte: NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS; v. 253, p. 19-pg., 2024-12-28.
Resumo

This paper considers a large class of nonlinear integro-differential scalar equations which involve an anomalous diffusion ( e.g. driven by a fractional Laplacian) and a non-local singular convolution kernel. Each of those singular equations is obtained as the macroscopic limit of an interacting particle system modeled as N coupled stochastic differential equations driven by L & eacute;vy processes. In particular we derive quantitative estimates between the microscopic empirical measure of the particle system and the solution to the limit equation in some non- homogeneous Sobolev space. Our result only requires very weak regularity on the interaction kernel, therefore it includes numerous applications, e.g.: the 2 d turbulence model (including the quasi-geostrophic equation) in sub-critical regime, the 2 d generalized Navier-Stokes equation, the fractional Keller-Segel equation in any dimension, and the fractal Burgers equation. (AU)

Processo FAPESP: 22/03379-0 - Análise estocástica e determinística para modelos irregulares
Beneficiário:Christian Horacio Olivera
Modalidade de apoio: Auxílio à Pesquisa - Regular
Processo FAPESP: 20/04426-6 - Dinâmica estocástica: aspectos analíticos, geométricos e aplicações
Beneficiário:Paulo Regis Caron Ruffino
Modalidade de apoio: Auxílio à Pesquisa - Temático