Métodos topológicos em dinâmica de superfícies: da família de Hénon a conjuntos de...
3-variedades hiperbólicas e implicação entre automorfismos de superfícies
Texto completo | |
Autor(es): |
Número total de Autores: 2
|
Afiliação do(s) autor(es): | [1] IME USP, Dept Matemat Aplicada, BR-05508090 Sao Paulo - Brazil
[2] Univ Liverpool, Dept Math Sci, Liverpool L69 7ZL, Merseyside - England
Número total de Afiliações: 2
|
Tipo de documento: | Artigo Científico |
Fonte: | GEOMETRY & TOPOLOGY; v. 16, n. 4, p. 1881-1966, 2012. |
Citações Web of Science: | 3 |
Resumo | |
A method is presented for constructing closed surfaces out of Euclidean polygons with infinitely many segment identifications along the boundary. The metric on the quotient is identified. A sufficient condition is presented which guarantees that the Euclidean structure on the polygons induces a unique conformal structure on the quotient surface, making it into a closed Riemann surface. In this case, a modulus of continuity for uniformising coordinates is found which depends only on the geometry of the polygons and on the identifications. An application is presented in which a uniform modulus of continuity is obtained for a family of pseudo-Anosov homeomorphisms, making it possible to prove that they converge to a Teichmuller mapping on the Riemann sphere. (AU) | |
Processo FAPESP: | 06/03829-2 - Dinâmica em baixas dimensões |
Beneficiário: | André Salles de Carvalho |
Modalidade de apoio: | Auxílio à Pesquisa - Temático |