Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

On Properties of a Fibonacci Restricted Lie Algebra

Autor(es):
Petrogradsky, V. M. [1] ; Shestakov, I. P. [2]
Número total de Autores: 2
Afiliação do(s) autor(es):
[1] Ulyanovsk State Univ. Fac Math
[2] Univ Sao Paulo. Inst Math & Estat
Número total de Afiliações: 2
Tipo de documento: Artigo Científico
Fonte: JOURNAL OF LIE THEORY; v. 23, n. 2, p. 407-431, 2013.
Citações Web of Science: 1
Resumo

Let R = K{[}t(i)vertical bar i >= 0]/(t(i)(p)vertical bar i >= 0) be the truncated polynomial ring, where K is a field of characteristic 2. Let partial derivative(i) = partial derivative/partial derivative(ti), i >= 1, denote the respective derivations. Consider the operators v(1) = partial derivative(1) + t(0)(partial derivative(2) + t(1)(partial derivative(3) + t(2)(partial derivative(4) + t(3)(partial derivative(5) + t(4)(partial derivative(6) + ... ))))); v(2) = partial derivative(2) + t(1)(partial derivative(3) + t(2)(partial derivative(4) + t(3)(partial derivative(5) + t(4)(partial derivative(6) + ... )))). Let L = Lie(v(1), v(2)) and L = Lie(p)(v(1), v(2)) subset of Der R be the Lie algebra and the restricted Lie algebra generated by these derivations, respectively. These algebras were introduced by the first author and called Fibonacci Lie algebras. It was established that L has polynomial growth and a nil p-mapping. The latter property is a natural analogue of periodicity of Grigorchuk and Gupta-Sidki groups. We also proved that L, the associative algebra generated by these derivations A = Alg(v(1), v(2)) subset of End(R), and the augmentation ideal of the restricted enveloping algebra u(0)(L) are direct sums of two locally nilpotent subalgebras. The goal of the present paper is to study Fibonacci Lie algebras in more details. We give a clear basis for the algebras L and L. We find functional equations and recurrence formulas for generating functions of L and G, also we find explicit formulas for these functions. We determine the center, terms of the lower central series, values of regular growth functions, and terms of the derived series of G. We observed before that L is not just infinite dimensional. Now we introduce one more restricted Lie algebra G = Lie(p)(partial derivative(1), v(2)) and prove that it is just infinite dimensional. Finally, we formulate open problems. (AU)

Processo FAPESP: 10/50347-9 - Álgebras, representações e aplicações
Beneficiário:Ivan Chestakov
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 05/60337-2 - Álgebras de Lie e de Jordan, suas representações e generalizações
Beneficiário:Ivan Chestakov
Modalidade de apoio: Auxílio à Pesquisa - Temático