Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Statistical and dynamical properties of a dissipative kicked rotator

Texto completo
Autor(es):
Oliveira, Diego F. M. [1] ; Leone, Edson D. [1]
Número total de Autores: 2
Afiliação do(s) autor(es):
[1] Univ Estadual Pau lista, UNESP, Dept Fis, BR-13506900 Rio Claro, SP - Brazil
Número total de Afiliações: 1
Tipo de documento: Artigo Científico
Fonte: PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS; v. 413, p. 498-514, NOV 1 2014.
Citações Web of Science: 3
Resumo

Some dynamical and statistical properties for a conservative as well as the dissipative problem of relativistic particles in a waveguide are considered. For the first time, two different types of dissipation namely: (i) due to viscosity and; (ii) due to inelastic collision (upon the kick) are considered individually and acting together. For the first case, and contrary to what is expected for the original Zaslavsky's relativistic model, we show there is a critical parameter where a transition from local to global chaos occurs. On the other hand, after considering the introduction of dissipation also on the kick, the structure of the phase space changes in the sense that chaotic and periodic attractors appear. We study also the chaotic sea by using scaling arguments and we proposed an analytical argument to reinforce the validity of the scaling exponents obtained numerically. In principle such an approach can be extended to any two-dimensional map. Finally, based on the Lyapunov exponent, we show that the parameter space exhibits infinite families of self-similar shrimp-shape structures, corresponding to periodic attractors, embedded in a large region corresponding to chaotic attractors. (C) 2014 Elsevier B.V. All rights reserved. (AU)

Processo FAPESP: 12/23688-5 - Expoentes e leis de escala, transições de fase e propriedades de transporte em sistemas dependentes do tempo
Beneficiário:Edson Denis Leonel
Modalidade de apoio: Auxílio à Pesquisa - Regular