Busca avançada
Ano de início
Entree


Dynamical spectral sequences for Morse-Novikov and Morse-Bott complexes

Texto completo
Autor(es):
Dahisy Valadão de Souza Lima
Número total de Autores: 1
Tipo de documento: Tese de Doutorado
Imprenta: Campinas, SP.
Instituição: Universidade Estadual de Campinas (UNICAMP). Instituto de Matemática, Estatística e Computação Científica
Data de defesa:
Membros da banca:
Ketty Abaroa de Rezende; Marco Antonio Teixeira; Oziride Manzoli Neto; Regilene Delazari dos Santos Oliveira; Maria do Carmo Carbinatto
Orientador: Ketty Abaroa de Rezende
Resumo

O tema principal desta tese é o estudo de fluxos gradientes associados a campos vetoriais $-\nabla f$ em variedades fechadas, onde $f$ é uma função do tipo Morse, Morse circular e Morse-Bott. Para obter informações dinâmicas em cada caso, utilizamos ferramentas algébricas e topológicas, tais como sequências espectrais e matrizes de conexão. No contexto de Morse, consideramos um complexo de cadeias $(C,\Delta)$ gerado pelos pontos críticos de $f$ onde $\Delta$ conta (com sinal) o número de linhas do fluxo entre dois pontos críticos consecutivos. Uma análise via sequências espectrais $(E^{r},d^{r})$ é feita para se obter resultados de continuação global em superfícies. Nós relacionamos as diferenciais da $r$-ésima página de $(E^{r},d^{r})$ com cancelamentos dinâmicos entre pontos críticos. No caso de função de Morse circular $f:M \rightarrow S^{1}$, o método da varredura para um complexo de Novikov $(\mathcal{N},\Delta)$ associado $f$ e gerado pelos pontos críticos de $f$ é definido sobre o anel $\mathbb{Z}((t))$. Este método produz a cada etapa matrizes de Novikov. Provamos que a matriz final produzida pelo método da varredura tem entradas polinomiais, o que é surpreendente, já que as matrizes intermediárias podem ter séries infinitas como entradas. Apresentamos resultados que mostram que os módulos e diferenciais de uma sequência espectral associada a $(\mathcal{N},\Delta)$ podem ser recuperados através do método da varredura. Para fluxos gradientes associados a funções de Morse-Bott, as singularidades formam variedades críticas. Usamos a teoria do índice de Conley para obter uma caracterização do conjunto de matrizes de conexão para fluxos Morse-Bott. Obtemos resultados sobre o efeito no conjunto de matrizes de conexão causado por mudanças na ordem parcial e na decomposição de Morse de um conjunto invariante isolado (AU)

Processo FAPESP: 10/08579-0 - Matrizes de Transição associadas aos Complexos de Morse-Witten
Beneficiário:Dahisy Valadão de Souza Lima
Modalidade de apoio: Bolsas no Brasil - Doutorado