Busca avançada
Ano de início
Entree


Teoria de Morse em grupóides de Lie

Texto completo
Autor(es):
Fabricio Valencia Quintero
Número total de Autores: 1
Tipo de documento: Tese de Doutorado
Imprenta: São Paulo.
Instituição: Universidade de São Paulo (USP). Instituto de Matemática e Estatística (IME/SBI)
Data de defesa:
Membros da banca:
Ivan Struchiner; Claudio Gorodski; Lino Anderson da Silva Grama; Mateus Moreira de Melo; Luca Vitagliano
Orientador: Cristian Andres Ortiz Gonzalez
Resumo

Estendemos a teoria de Morse clássica ao contexto dos grupóides de Lie e seus stacks diferenciáveis. Isto nos permite obter informações geométricas e topológicas dos objetos singulares representados pelos espaços de órbitas correspondentes, oferecendo uma abordagem unificada para estudar a teoria de Morse equivariante, bem como a teoria de Morse para orbifolds. Mostramos uma versão do lema de Morse em grupóides, descrevemos o comportamento topológico dos grupóides de Lie ao redor das órbitas críticas não degeneradas, estudamos a dinâmica de Morse-Smale e recuperamos a cohomologia de BottShulmanStasheff de um grupóide usando técnicas da teoria de Morse. Definimos funções de Morse em stacks, provando assim análogos dos resultados anteriores no contexto dos stacks diferenciáveis. Isto último nos permite obter desigualdades de tipo Morse para espaços de órbitas compactos associados a grupóides próprios. Para desenvolver uma teoria de Morse 2-equivariante em grupóides, introduzimos uma noção natural de ação isométrica de um 2-grupo de Lie em grupóides Riemannianos. As contrapartes globais e infinitesimais de tal noção são exploradas em detalhe. Também estudamos a existência de geodésicas fechadas em stacks Riemannianos e descrevemos construções que explicam como obter a cohomologia equivariante dos stacks simpléticos tóricos. (AU)

Processo FAPESP: 20/07704-7 - Teoria de Morse em grupoides de Lie e stacks
Beneficiário:Fabricio Valencia Quintero
Modalidade de apoio: Bolsas no Brasil - Doutorado