Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Integrability and Dynamics of Quadratic Three-Dimensional Differential Systems Having an Invariant Paraboloid

Texto completo
Autor(es):
Messias, Marcelo ; Reinol, Alisson C.
Número total de Autores: 2
Tipo de documento: Artigo Científico
Fonte: INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS; v. 26, n. 8 JUL 2016.
Citações Web of Science: 3
Resumo

Invariant algebraic surfaces are commonly observed in differential systems arising in mathematical modeling of natural phenomena. In this paper, we study the integrability and dynamics of quadratic polynomial differential systems defined in R-3 having an elliptic paraboloid as an invariant algebraic surface. We obtain the normal form for these kind of systems and, by using the invariant paraboloid, we prove the existence of first integrals, exponential factors, Darboux invariants and inverse Jacobi multipliers, for suitable choices of parameter values. We characterize all the possible configurations of invariant parallels and invariant meridians on the invariant paraboloid and give necessary conditions for the invariant parallel to be a limit cycle and for the invariant meridian to have two orbits heteroclinic to a point at infinity. We also study the dynamics of a particular class of the quadratic polynomial differential systems having an invariant paraboloid, giving information about localization and local stability of finite singular points and, by using the Poincare compactification, we study their dynamics on the Poincare sphere (at infinity). Finally, we study the well-known Rabinovich system in the case of invariant paraboloids, performing a detailed study of its dynamics restricted to these invariant algebraic surfaces. (AU)

Processo FAPESP: 13/24541-0 - Teorias ergódica e qualitativa dos sistemas dinâmicos
Beneficiário:Claudio Aguinaldo Buzzi
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 13/26602-7 - Integrabilidade e dinâmica global de campos vetoriais quadráticos definidos no R^3 com superfícies Quádricas invariantes
Beneficiário:Alisson de Carvalho Reinol
Modalidade de apoio: Bolsas no Brasil - Doutorado