Estudo de uma EDP elíptica geométrica em uma superfície compacta
Hipersuperfícies mínimas completas em espaços simétricos não-compactos
Superfícies bi-harmônicas de variedades Riemanniana tridimensionais
Texto completo | |
Autor(es): |
Anciaux, Henri
Número total de Autores: 1
|
Tipo de documento: | Artigo Científico |
Fonte: | BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY; v. 56, n. 2, p. 641-653, OCT 2015. |
Citações Web of Science: | 0 |
Resumo | |
We study surfaces with one constant principal curvature in Riemannian and Lorentzian three-dimensional space forms. Away from umbilic points they are characterized as one-parameter foliations by curves of constant curvature, each of them being centered at a point of a regular curve and contained in its normal plane. In some cases, a kind of trichotomy phenomenon is observed: the curves of the foliations may be circles, hyperbolas or horocycles, depending of whether the constant principal curvature is respectively larger, smaller of equal to one (not necessarily in this order). We describe explicitly some examples showing that there do exist complete surfaces with one constant principal curvature enjoying both umbilic and non-umbilic points. (AU) | |
Processo FAPESP: | 11/21362-2 - Ações de grupos, teoria de subvariedades, e análise global em geometria Riemanniana e pseudo-riemanniana |
Beneficiário: | Paolo Piccione |
Modalidade de apoio: | Auxílio à Pesquisa - Temático |