Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Normal forms of bireversible vector fields

Texto completo
Autor(es):
Baptistelli, P. H. [1] ; Manoel, M. [2] ; Zeli, I. O. [3]
Número total de Autores: 3
Afiliação do(s) autor(es):
[1] Univ Estadual Maringa, Dept Math, BR-87020900 Maringa, Parana - Brazil
[2] Univ Sao Paulo, ICMC, Dept Math, CP 668, BR-13560970 Sao Carlos, SP - Brazil
[3] IEF ITA, Dept Math, BR-12228900 Sao Jose Dos Campos, SP - Brazil
Número total de Afiliações: 3
Tipo de documento: Artigo Científico
Fonte: BULLETIN DES SCIENCES MATHEMATIQUES; v. 154, p. 102-126, AUG 2019.
Citações Web of Science: 0
Resumo

In this paper we adapt the method of Baptistelli, Manoel, and Zeli (2016) {[}6] to obtain normal forms of a class of smooth bireversible vector fields. These are vector fields reversible under the action of two linear involution and whose linearization has a nilpotent part and a semisimple part with purely imaginary eigenvalues. We show that these can be put formally in normal form preserving the reversing symmetries and their linearization. The approach we use is based on an algebraic structure of the set of this type of vector fields. Although this can lead to extensive calculations in some cases, it is in general a simple and algorithmic way to compute the normal forms. We present some examples, which are Hamiltonian systems without resonance for one case and other cases with certain resonances. (C) 2019 Elsevier Masson SAS. All rights reserved. (AU)

Processo FAPESP: 12/23591-1 - Teoria de singularidades em sistemas dinâmicos descontínuos na presença de simetria
Beneficiário:Iris de Oliveira Zeli
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado