Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Chaotic diffusion for particles moving in a time dependent potential well

Texto completo
Autor(es):
Leonel, Edson D. [1] ; Kuwana, Celia Mayumi [1] ; Yoshida, Makoto [1] ; de Oliveira, Juliano Antonio [1, 2]
Número total de Autores: 4
Afiliação do(s) autor(es):
[1] Univ Estadual Paulista, UNESP, Dept Fis, Av 24A, 1515 Bela Vista, BR-13506900 Rio Claro, SP - Brazil
[2] Univ Estadual Paulista, UNESP, Campus Sao Joao da Boa Vista 505, BR-13876750 Sao Joao Da Boa Vista, SP - Brazil
Número total de Afiliações: 2
Tipo de documento: Artigo Científico
Fonte: Physics Letters A; v. 384, n. 28 OCT 9 2020.
Citações Web of Science: 0
Resumo

The chaotic diffusion for particles moving in a time dependent potential well is described by using two different procedures: (i) via direct evolution of the mapping describing the dynamics and; (ii) by the solution of the diffusion equation. The dynamic of the diffusing particles is made by the use of a two dimensional, nonlinear area preserving map for the variables energy and time. The phase space of the system is mixed containing both chaos, periodic regions and invariant spanning curves limiting the diffusion of the chaotic particles. The chaotic evolution for an ensemble of particles is treated as random particles motion and hence described by the diffusion equation. The boundary conditions impose that the particles can not cross the invariant spanning curves, serving as upper boundary for the diffusion, nor the lowest energy domain that is the energy the particles escape from the time moving potential well. The diffusion coefficient is determined via the equation of the mapping while the analytical solution of the diffusion equation gives the probability to find a given particle with a certain energy at a specific time. The momenta of the probability describe qualitatively the behavior of the average energy obtained by numerical simulation, which is investigated either as a function of the time as well as some of the control parameters of the problem. (C) 2020 Elsevier B.V. All rights reserved. (AU)

Processo FAPESP: 19/14038-6 - Investigação de propriedades dinâmicas em sistemas não lineares
Beneficiário:Edson Denis Leonel
Modalidade de apoio: Auxílio à Pesquisa - Regular
Processo FAPESP: 18/14685-9 - Propriedades de transporte e análise de bifurcações em sistemas dinâmicos não lineares
Beneficiário:Juliano Antonio de Oliveira
Modalidade de apoio: Auxílio à Pesquisa - Regular