Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Maximally differential ideals of finite projective dimension

Texto completo
Autor(es):
Miranda-Neto, Cleto B. [1]
Número total de Autores: 1
Afiliação do(s) autor(es):
[1] Univ Fed Paraiba, BR-58051900 Joao Pessoa, Paraiba - Brazil
Número total de Afiliações: 1
Tipo de documento: Artigo Científico
Fonte: BULLETIN DES SCIENCES MATHEMATIQUES; v. 166, FEB 2021.
Citações Web of Science: 0
Resumo

For decades, differential ideals have played an important role in algebra. In this paper, if A is a Noetherian local ring with positive residual characteristic, we characterize when a maximally differential ideal B subset of A is an integrally closed ideal of finite projective dimension. Our main argument yields, in a characteristic-free setting, that if B has finite projective dimension then B must be a complete intersection. This generalizes a well-known result which assumes A to be regular. We derive further homological criteria and, along the way, we conjecture (in positive residual characteristic) that if B is maximally differential with respect to the entire derivation module, then A must be a complete intersection ring if B is integrally closed and has finite complete intersection dimension. (C) 2020 Elsevier Masson SAS. All rights reserved. (AU)

Processo FAPESP: 19/21843-2 - Cohomologia local, problemas homológicos, e álgebras de blowup
Beneficiário:Victor Hugo Jorge Pérez
Modalidade de apoio: Auxílio à Pesquisa - Pesquisador Visitante - Brasil