Busca avançada
Ano de início
Entree


A semilinear elliptic equation with homogeneous Neumann boundary conditions posed in thin domains with outward peaks

Texto completo
Autor(es):
de Araujo, Patricia Neves ; Nakasato, Jean Carlos ; Pereira, Marcone Correa
Número total de Autores: 3
Tipo de documento: Artigo Científico
Fonte: REVISTA MATEMATICA COMPLUTENSE; v. N/A, p. 41-pg., 2025-10-03.
Resumo

In this paper, we investigate the behavior of the solutions of a semilinear elliptic equation posed in a thin domain with an outward peak. Such peak is given by a nonnegative function which sets the profile of our region and makes the analysis challenging. In a first moment, we apply standard methods from asymptotic analysis and thin domains to show the strong convergence of the solutions of the linear version of the problem also determining the rate of convergence. In the sequel, we derive conditions under which the linear limit equation has a compact resolvent in order to analyze the semilinear equation. We obtain upper and lower semicontinuity of the solutions establishing rate of convergence under appropriated conditions on the geometry of the thin domain. (AU)

Processo FAPESP: 22/08112-1 - Perturbação de domínio em equações diferenciais parciais
Beneficiário:Jean Carlos Nakasato
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado
Processo FAPESP: 20/14075-6 - Sistemas dinâmicos e seus atratores sob perturbação
Beneficiário:Alexandre Nolasco de Carvalho
Modalidade de apoio: Auxílio à Pesquisa - Temático