| Texto completo | |
| Autor(es): |
Número total de Autores: 3
|
| Afiliação do(s) autor(es): | [1] Univ Fed Itajuba, Inst Matemat Comp, BR-37500903 Itajuba, MG - Brazil
[2] Univ Fed Sao Carlos, Dept Matemat, BR-13565905 Sao Paulo - Brazil
Número total de Afiliações: 2
|
| Tipo de documento: | Artigo Científico |
| Fonte: | Journal of Mathematical Analysis and Applications; v. 413, n. 2, p. 685-699, MAY 15 2014. |
| Citações Web of Science: | 10 |
| Resumo | |
We study the asymptotic behavior of parabolic p-Laplacian problems of the form partial derivative u/partial derivative (t) - div (DA (t) I nu x (t)1P-2VuA (t)) + I uA (t) IP-2uA (t) = B(t,uA(t)) ut in a bounded smooth domain Q in IV, where n 1, p> 2, DA E L'({[}T-1,1] x S-2) with 0 < DA(t,x) m a.e. in {[}7, T] x fl, A E {[}0, co) and for each A E {[}0, infinity) we have IDA (s,x) - DA (t,x)I CA Is - trA for all x E Q, s, t E {[}T, 71 for some positive constants 0A and CA. Moreover, DA DA in L-infinity({[}gamma,lambda 1 x 12) as -> Al. We prove that for each A E {[}0,00) the evolution process of this problem has a pullback attractor and we show that the family of pullback attractors behaves upper semicontinuously at lambda(i). (C) 2013 Elsevier Inc. All rights reserved. (AU) | |
| Processo FAPESP: | 11/04166-5 - Continuidade de atratores para problemas parabólicos. |
| Beneficiário: | Marcelo José Dias Nascimento |
| Modalidade de apoio: | Auxílio à Pesquisa - Regular |