Advanced search
Start date
Betweenand
(Reference retrieved automatically from Web of Science through information on FAPESP grant and its corresponding number as mentioned in the publication by the authors.)

Soil hydromorphy and soil carbon: A global data analysis

Full text
Author(s):
Amendola, D. [1] ; Mutema, M. [2] ; Rosolen, V. [1] ; Chaplot, V. [3, 4]
Total Authors: 4
Affiliation:
[1] Univ Estadual Paulista UNESP, DPM, Av 24A, 1515 Bela Vista, CP 178, BR-13506900 Rio Claro, SP - Brazil
[2] Agr Res Council, Inst Agr Engn, PB X519, ZA-0127 Pretoria - South Africa
[3] Univ KwaZulu Natal, Sch Agr Earth & Environm Sci, PB X01, ZA-3209 Pietermaritzburg - South Africa
[4] IRD CNRS UPMC MNHN, LOCEAN, UMR 7159, 4 Pl Jussieu, F-75252 Paris - France
Total Affiliations: 4
Document type: Journal article
Source: Geoderma; v. 324, p. 9-17, AUG 15 2018.
Web of Science Citations: 3
Abstract

Wetland soils are an important component of the Global Carbon Cycle because they store about 20-25% of the terrestrial soil organic carbon (SOC). Wetlands occupy about 6% of the global land surface and any change in their use or management has potentially dramatic consequences on greenhouse gases emissions. However, the capacity of wetland soils to store carbon (C) differs from place to place due to reasons still not well understood. The objective of this review was to evaluate the global variations in wetlands SOC content (SOCc) and to relate it to key soil and environmental factors such as soil texture, intensity of soil hydromorphy, metallic element content and climate. A comprehensive data analysis was performed using 122 soil profiles from 29 studies performed under temperate, humid, sub-humid, tropical and sub-arctic conditions. The results point to average SOCc of 53.5 +/- 15.8 g C kg(-1) with a maximum of 540 g C kg(-1). SOCc increased with increase in intensity of soil hydromorphy (r = - 0.52), Al (r = 0.19) and Fe content (r = 0.21), and decreased with soil pH (r = - 0.24). There was also a surprising tendency for intensity of soil hydromorphy, and thus SOCc, to decrease with increasing mean annual precipitation and soil clay content. These results contribute to a better understanding of the impact of soil hydromorphy in wetlands on organic C stabilization in the soils. However, further studies with additional information on soil bulk density to assess carbon C stocks, still need to be performed. (AU)

FAPESP's process: 17/14168-1 - Soil-landscape, caracterization of the phases organo-metallic and prospection of refractory clay in the Ferralsol-Gleysol cover (Western of Minas Gerais State)
Grantee:Vania Silvia Rosolen
Support type: Regular Research Grants