Advanced search
Start date
Betweenand
(Reference retrieved automatically from Web of Science through information on FAPESP grant and its corresponding number as mentioned in the publication by the authors.)

Leveraging the cruzain S3 subsite to increase affinity for reversible covalent inhibitors

Full text
Author(s):
Cianni, Lorenzo [1] ; Sartori, Geraldo [1] ; Rosini, Fabiana [1] ; De Vita, Daniela [1] ; Pires, Gabriel [1] ; Lopes, Bianca Rebelo [1] ; Leitao, Andrei [1] ; Burtoloso, Antonio C. B. [2] ; Montanari, Carlos A. [1]
Total Authors: 9
Affiliation:
[1] Univ Sao Paulo, IQSC, Grp Quim Med, Av Trab Sancarlense, 400 Parque Arnold Schimidt, BR-13566590 Sao Carlos, SP - Brazil
[2] Univ Sao Paulo, Inst Quim Sao Carlos, Sao Carlos, SP - Brazil
Total Affiliations: 2
Document type: Journal article
Source: BIOORGANIC CHEMISTRY; v. 79, p. 285-292, SEP 2018.
Web of Science Citations: 4
Abstract

Cruzain is themajor cysteine protease of Trypanosoma cruzi, the etiological agent of Chagas disease. Reversible covalent cruzain inhibitors can block the steps of cell differentiation in the parasite and kill the organism. To this end, the description of how inhibitors modified at the P2/P3 positions lead to analogs with greater cruzain affinity to the S2/S3 subsites is of fundamental importance. Albeit many efforts are being employed in the characterization of the interaction processes with S2 subsite, little is known about the cruzain S3 subsite. In this work, we show a brief but consistent study to identify favorable substitutions in P3 of dipeptidyl nitriles that increase cruzain affinity. Using molecular dynamics simulations, we have identified some dipeptidyl nitrile analogs with modifications at P3 position that had higher cruzain inhibition than the original un-substituted compound. A matched molecular pair analysis shows the importance of including a chlorine atom in the P3-meta position. The modifications implemented in P3 are confirmed when profiling the thermodynamic parameters via isothermal titration calorimetry. The classical enthalpy-entropy compensation phenomenon, in which enthalpy changes are counterbalanced by entropy results in a small modification of.G. The inclusion of the chlorine atom in the P3-meta position results in the highest reduction of the detrimental entropic contribution observed in P3. (AU)

FAPESP's process: 13/18009-4 - Molecular design, synthesis and trypanocidal activity of cruzain reversible covalent inhibitors
Grantee:Carlos Alberto Montanari
Support type: Research Projects - Thematic Grants