Advanced search
Start date
Betweenand


A Divide-and-Conquer Clustering Approach based on Optimum-Path Forest

Full text
Author(s):
Montero, Adan Echemendia ; Falcao, Alexandre Xavier ; IEEE
Total Authors: 3
Document type: Journal article
Source: PROCEEDINGS 2018 31ST SIBGRAPI CONFERENCE ON GRAPHICS, PATTERNS AND IMAGES (SIBGRAPI); v. N/A, p. 8-pg., 2018-01-01.
Abstract

Data clustering is one of the main challenges when solving Data Science problems. Despite its progress over almost one century of research, clustering algorithms still fail in identifying groups naturally related to the semantics of the problem. Moreover, the technological advances add crucial challenges with a considerable data increase, which are not handled by most techniques. We address these issues by proposing a divide-and-conquer approach to a clustering technique, which is unique in finding one group per dome of the probability density function of the data - the Optimum-Path Forest (OPF) clustering algorithm. Our approach can use all samples, or at least many samples, in the unsupervised learning process without affecting the grouping performance and, therefore, being less likely to lose relevant grouping information. We show that it can obtain satisfactory results when segmenting natural images into superpixels. (AU)

FAPESP's process: 14/12236-1 - AnImaLS: Annotation of Images in Large Scale: what can machines and specialists learn from interaction?
Grantee:Alexandre Xavier Falcão
Support Opportunities: Research Projects - Thematic Grants