Advanced search
Start date
Betweenand
Related content


A KERNEL MAXIMUM UNCERTAINTY DISCRIMINANT ANALYSIS AND ITS APPLICATION TO FACE RECOGNITION

Author(s):
Thomaz, Carlos Eduardo ; Giraldi, Gilson Antonio ; Ranchordas, A ; Araujo, H
Total Authors: 4
Document type: Journal article
Source: VISAPP 2009: PROCEEDINGS OF THE FOURTH INTERNATIONAL CONFERENCE ON COMPUTER VISION THEORY AND APPLICATIONS, VOL 1; v. N/A, p. 2-pg., 2009-01-01.
Abstract

In this paper, we extend the Maximum uncertainty Linear Discriminant Analysis (MLDA), proposed recently for limited sample size problems, to its kernel version. The new Kernel Maximum uncertainty Discriminant Analysis (KMDA) is a two-stage method composed of Kernel Principal Component Analysis (KPCA) followed by the standard MLDA. In order to evaluate its effectiveness, experiments on face recognition using the well-known ORL and FERET face databases were carried out and compared with other existing kernel discriminant methods, such as Generalized Discriminant Analysis (GDA) and Regularized Kernel Discriminant Analysis (RKDA). The classification results indicate that KMDA performs as well as GDA and RKDA, with the advantage of being a straightforward stabilization approach for the within-class scatter matrix that uses higher-order features for further classification improvements. (AU)

FAPESP's process: 05/02899-4 - Image, statistics and data mining: computational methods to analyse the human brain
Grantee:Carlos Eduardo Thomaz
Support Opportunities: Research Grants - Young Investigators Grants