Advanced search
Start date
Betweenand


Efficient Prediction of Region-wide Traffic States in Public Bus Networks using LSTMs

Full text
Author(s):
Amaris, Marcos ; Morais, Mayuri A. ; de Camargo, Raphael Y. ; IEEE
Total Authors: 4
Document type: Journal article
Source: 2021 IEEE INTELLIGENT TRANSPORTATION SYSTEMS CONFERENCE (ITSC); v. N/A, p. 6-pg., 2021-01-01.
Abstract

Public bus systems are impacted by many factors, such as varying traffic conditions, passenger demand, and weather changes. One can combine all those factors that affect bus travel times into a single factor called link state, where a link represents part of a bus route. Several works exist that predict single link states using different statistical and machine learning approaches. More recently, deep learning techniques, such as LSTMs, started to be used to predict the state of entire bus routes. The main problem with this approach is that it uses extensive computational resources. In this work, we evaluate the use of LSTMs to predict the state of entire city regions instead of single routes. It has two advantages: (i) the state of each link is evaluated only once for all the bus routes that cross it, and (ii) information from buses from all routes can be used to determine future link states. Using a shallow bidirectional LSTM architecture produced accurate state predictions with an average MAPE of 12.5. Moreover, we show that it can be trained daily and used to predict link states in real-time for a large metropolis, like Sao Paulo. (AU)

FAPESP's process: 15/24485-9 - Future internet for smart cities
Grantee:Fabio Kon
Support Opportunities: Research Projects - Thematic Grants
FAPESP's process: 14/50937-1 - INCT 2014: on the Internet of the Future
Grantee:Fabio Kon
Support Opportunities: Research Projects - Thematic Grants