Advanced search
Start date
Betweenand


Recent Progress in Amine Gas Sensors for Food Quality Monitoring: Novel Architectures for Sensing Materials and Systems

Full text
Author(s):
Andre, Rafaela S. ; Mercante, Luiza A. ; Facure, Murilo H. M. ; Sanfelice, Rafaela C. ; Fugikawa-Santos, Lucas ; Swager, Timothy M. ; Correa, Daniel S.
Total Authors: 7
Document type: Journal article
Source: ACS SENSORS; v. 7, n. 8, p. 28-pg., 2022-08-01.
Abstract

The increasing demand for food production has necessitated the development of sensitive and reliable methods of analysis, which allow for the optimization of storage and distribution while ensuring food safety. Methods to quantify and monitor volatile and biogenic amines are key to minimizing the waste of high-protein foods and to enable the safe consumption of fresh products. Novel materials and device designs have allowed the development of portable and reliable sensors that make use of different transduction methods for amine detection and food quality monitoring. Herein, we review the past decade's advances in volatile amine sensors for food quality monitoring. First, the role of volatile and biogenic amines as a food-quality index is presented. Moreover, a comprehensive overview of the distinct amine gas sensors is provided according to the transduction method, operation strategies, and distinct materials (e.g., metal oxide semiconductors, conjugated polymers, carbon nanotubes, graphene and its derivatives, transition metal dichalcogenides, metal organic frameworks, MXenes, quantum dots, and dyes, among others) employed in each case. These include chemoresistive, fluorometric, colorimetric, and microgravimetric sensors. Emphasis is also given to sensor arrays that record the food quality fingerprints and wireless devices that operate as radiofrequency identification (RFID) tags. Finally, challenges and future opportunities on the development of new amine sensors are presented aiming to encourage further research and technological development of reliable, integrated, and remotely accessible devices for food-quality monitoring. (AU)

FAPESP's process: 17/12174-4 - Development of hybrid polymer nanofibers for agricultural applications
Grantee:Daniel Souza Corrêa
Support Opportunities: Regular Research Grants
FAPESP's process: 17/10582-8 - Production and characterization of graphene quantum dots and their application in chemical sensors
Grantee:Murilo Henrique Moreira Facure
Support Opportunities: Scholarships in Brazil - Doctorate
FAPESP's process: 18/22214-6 - Towards a convergence of technologies: from sensing and biosensing to information visualization and machine learning for data analysis in clinical diagnosis
Grantee:Osvaldo Novais de Oliveira Junior
Support Opportunities: Research Projects - Thematic Grants
FAPESP's process: 16/23793-4 - Development of nanostructured sensor aiming the detection of volatile compounds for food quality indicators
Grantee:Rafaela da Silveira Andre
Support Opportunities: Scholarships in Brazil - Post-Doctoral