Advanced search
Start date
Betweenand


A Non-Hybrid Data-Driven Fuzzy Inference System for Coagulant Dosage in Drinking Water Treatment Plant: Machine-Learning for Accurate Real-Time Prediction

Full text
Author(s):
Show less -
Bressane, Adriano ; Goulart, Ana Paula Garcia ; Melo, Carrie Peres ; Gomes, Isadora Gurjon ; Loureiro, Anna Isabel Silva ; Negri, Rogerio Galante ; Moruzzi, Rodrigo ; dos Reis, Adriano Goncalves ; Formiga, Jorge Kennety Silva ; da Silva, Gustavo Henrique Ribeiro ; Thome, Ricardo Fernandes
Total Authors: 11
Document type: Journal article
Source: WATER; v. 15, n. 6, p. 14-pg., 2023-03-01.
Abstract

Coagulation is the most sensitive step in drinking water treatment. Underdosing may not yield the required water quality, whereas overdosing may result in higher costs and excess sludge. Traditionally, the coagulant dosage is set based on bath experiments performed manually, known as jar tests. Therefore, this test does not allow real-time dosing control, and its accuracy is subject to operator experience. Alternatively, solutions based on machine learning (ML) have been evaluated as computer-aided alternatives. Despite these advances, there is open debate on the most suitable ML method applied to the coagulation process, capable of the most highly accurate prediction. This study addresses this gap, where a comparative analysis between ML methods was performed. As a research hypothesis, a data-driven (D-2) fuzzy inference system (FIS) should provide the best performance due to its ability to deal with uncertainties inherent to complex processes. Although ML methods have been widely investigated, only a few studies report hybrid neuro-fuzzy systems applied to coagulation. Thus, to the best of our knowledge, this is the first study thus far to address the accuracy of this non-hybrid data-driven FIS ((DFIS)-F-2) for such an application. The (DFIS)-F-2 provided the smallest error (0.69 mg/L), overcoming the adaptive neuro-fuzzy inference system (1.09), cascade-correlation network (1.18), gene expression programming (1.15), polynomial neural network (1.20), probabilistic network (1.17), random forest (1.26), radial basis function network (1.28), stochastic gradient tree boost (1.25), and support vector machine (1.17). This finding points to the (DFIS)-F-2 as a promising alternative tool for accurate real-time coagulant dosage in drinking water treatment. In conclusion, the (DFIS)-F-2 can help WTPs to reduce operating costs, prevent errors associated with manual processes and operator experience, and standardize the efficacy with real-time and highly accurate predictions, and enhance safety for the water industry. Moreover, the evidence from this study can assist in filling the gap with the most suitable ML method and identifying a promising alternative for computer-aided coagulant dosing. For further advances, future studies should address the potential of the (DFIS)-F-2 for the control and optimization of other unit operations in drinking water treatment. (AU)

FAPESP's process: 22/03675-8 - Analysis of the use of artificial intelligence applied to coagulant dosage on water treatment
Grantee:Ana Paula Garcia Goulart
Support Opportunities: Scholarships in Brazil - Scientific Initiation