Advanced search
Start date
Betweenand


Radiative Transfer in Decretion Disks of Be Binaries

Author(s):
Panoglou, D. ; Faes, D. M. ; Carciofi, A. C. ; Okazaki, A. T. ; Rivinius, Th. ; Miroshnichenko, A ; Zharikov, S ; Korcakova, D ; Wolf, M
Total Authors: 9
Document type: Journal article
Source: B(E) PHENOMENON: FORTY YEARS OF STUDIES; v. 508, p. 6-pg., 2017-01-01.
Abstract

In this work we explore the effect of binarity on the decretion disk of Be stars in order to explain their variability. To this aim, we performed smoothed particle hydrodynamics (SPH) simulations on Be binary systems, following the matter ejected isotropically from the equator of the Be star towards the base of an isothermal decretion disk. We let the system evolve long enough to be considered at steady state, and focus on the effect of viscosity for coplanar prograde binary orbits. The disk structure is found to be locked to the orbital phase and to exhibit a dependence on the azimuthal angle. Additionally, we present the first results from detailed non-local thermodynamic equilibrium (non-LTE) radiative transfer calculations of the disk structure computed with the SPH code. This is achieved by the use of the three-dimensional (3D) Monte Carlo code HDUST, which can produce predictions with respect to a series of observables. (AU)

FAPESP's process: 13/16801-2 - Modelling the formation and evolution of inflowing and outflowing gaseous disks around stars
Grantee:Despina Panoglou
Support Opportunities: Scholarships in Brazil - Post-Doctoral
FAPESP's process: 16/16844-1 - Systems Engineering for GMACS: GMT AT-13 Project
Grantee:Daniel Moser Faes
Support Opportunities: Scholarships in Brazil - Post-Doctoral
FAPESP's process: 09/54006-4 - A computer cluster for the Astronomy Department of the University of São Paulo Institute of Astronomy, Geophysics and Atmospheric Sciences and for the Cruzeiro do Sul University Astrophysics Center
Grantee:Elisabete Maria de Gouveia Dal Pino
Support Opportunities: Multi-user Equipment Program
FAPESP's process: 15/17967-7 - Viscous decretion disks: theory and observations
Grantee:Alex Cavaliéri Carciofi
Support Opportunities: Regular Research Grants