Advanced search
Start date
Betweenand


SnO2-REDUCED GRAPHENE OXIDE NANOCOMPOSITE FOR ETHANOL SENSING AT ROOM TEMPERATURE

Full text
Author(s):
Zito, C. A. ; Volanti, D. P. ; Kriven, WM ; Wang, J ; Zhou, Y ; Zhu, D ; Costa, G
Total Authors: 7
Document type: Journal article
Source: DEVELOPMENTS IN STRATEGIC CERAMIC MATERIALS II; v. N/A, p. 7-pg., 2017-01-01.
Abstract

Nanocomposites based on metal oxide semiconductors and reduced graphene oxide (RGO) have been proposed as gas sensors to respond at room temperature. In this work, we prepared SnO2-RGO nanocomposite by microwave-assisted hydrothermal (MAH) method in one-step. The combined characterization techniques including X-ray diffraction (XRD), Fourier-transform infrared (MIR) spectroscopy, field emission-scanning electron microscopy (FESEM), energy dispersive spectroscopy (EDS) and transmission electron microscopy (TEM) confirm the formation of SnO2-RGO nanocomposite, and the distribution of SnO2 nanoparticles on RGO surface. The gas sensing performance of SnO2-RGO was evaluated by ethanol exposure at room temperature (21 degrees C). The results of gas sensing performance reveal that SnO2-RGO sensor has a great response to ethanol at room temperature, with a response time of about 100 seconds for the highest concentration of the gas (1,500 ppm). Moreover, it was found that the sensor has a higher selectivity for ethanol than for methanol. It is considered that RGO plays an important role in the gas sensing response. (AU)

FAPESP's process: 14/17343-0 - Effect of metal catalysts or reduced graphene oxide on metal oxides semiconductors for detection of volatile organic compounds
Grantee:Diogo Paschoalini Volanti
Support Opportunities: Regular Research Grants
FAPESP's process: 15/05916-9 - Synergy between Pd-SnO2 or reduced graphene oxide-SnO2 for volatile organic compounds detection in humidity
Grantee:Cecilia de Almeida Zito
Support Opportunities: Scholarships in Brazil - Master