Advanced search
Start date
Betweenand


Carbon Corrosion in Proton-Exchange Membrane Fuel Cells: Spectrometric Evidence for Pt-Catalysed Decarboxylation at Anode-Relevant Potentials

Full text
Author(s):
Maillard, Frederic ; Silva, Wanderson O. ; Castanheira, Luis ; Dubau, Laetitia ; Lima, Fabio H. B.
Total Authors: 5
Document type: Journal article
Source: ChemPhysChem; v. 20, n. 22, p. 6-pg., 2019-07-11.
Abstract

The carbon oxidation reaction (COR) is a critical issue in proton-exchange membrane fuel cells (PEMFCs), as carbon in various forms is the most used electrocatalyst support material. The COR is thermodynamically possible above the C/CO2 standard potential, but its rate becomes significantly important only at high overpotential (e. g. PEMFC cathode potential). Herein, using on-line differential electrochemical mass spectrometry, we show that oxygen-containing carbon surface groups present on high-surface aera carbon, Vulcan XC72 or reinforced graphite are oxidized at PEMFC anode-relevant potential (E=0.1 V vs. the reversible hydrogen electrode, RHE), but not at E=0.4 V vs. RHE. We rationalized our findings by considering a Pt-catalysed decarboxylation mechanism in which Pt nanoparticles provide adsorbed hydrogen species to the oxygen-containing carbon surface groups, eventually leading to evolution of carbon dioxide and carbon monoxide. These results shed fundamental light on an unexpected degradation mechanism and facilitate the understanding of the long-term stability of PEMFC anode nanocatalysts. (AU)

FAPESP's process: 16/13323-0 - Carbon Dioxide and Water Electrochemistry: Application in Energy Conversion and Storage
Grantee:Fabio Henrique Barros de Lima
Support Opportunities: Regular Research Grants
FAPESP's process: 13/16930-7 - Electrocatalysis V: electrocatalytic processes of chemical and electrical energy interconversion
Grantee:Edson Antonio Ticianelli
Support Opportunities: Research Projects - Thematic Grants