Advanced search
Start date
Betweenand


Image Segmentation by Relaxed Deep Extreme Cut with Connected Extreme Points

Full text
Author(s):
Oliveira, Debora E. C. ; Demario, Caio L. ; Miranda, Paulo A., V
Total Authors: 3
Document type: Journal article
Source: DISCRETE GEOMETRY AND MATHEMATICAL MORPHOLOGY, DGMM 2021; v. 12708, p. 13-pg., 2021-01-01.
Abstract

In this work, we propose a hybrid method for image segmentation based on the selection of four extreme points (leftmost, rightmost, top and bottom pixels at the object boundary), combining Deep Extreme Cut, a connectivity constraint for the extreme points, a marker-based color classifier from automatically estimated markers and a final relaxation procedure with the boundary polarity constraint, which is related to the extension of Random Walks to directed graphs as proposed by Singaraju et al. Its second constituent element presents theoretical contributions on how to optimally convert the 4 point boundary-based selection into connected region-based markers for image segmentation. The proposed method is able to correct imperfections from Deep Extreme Cut, leading to considerably improved results, in public datasets of natural images, with minimal user intervention (only four mouse clicks). (AU)

FAPESP's process: 16/21591-5 - Development of robust methods for edge delineation in images using graphs
Grantee:Fábio Augusto Menocci Cappabianco
Support Opportunities: Regular Research Grants
FAPESP's process: 14/50937-1 - INCT 2014: on the Internet of the Future
Grantee:Fabio Kon
Support Opportunities: Research Projects - Thematic Grants
FAPESP's process: 14/12236-1 - AnImaLS: Annotation of Images in Large Scale: what can machines and specialists learn from interaction?
Grantee:Alexandre Xavier Falcão
Support Opportunities: Research Projects - Thematic Grants