Advanced search
Start date
Betweenand


The Twisted Partial Group Algebra and (Co)homology of Partial Crossed Products

Full text
Author(s):
Dokuchaev, Mikhailo ; Jerez, Emmanuel
Total Authors: 2
Document type: Journal article
Source: BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY; v. 55, n. 3, p. 48-pg., 2024-09-01.
Abstract

Given a group G and a partial factor set sigma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document} of G, we introduce the twisted partial group algebra kappa par sigma G,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\kappa }_{\textrm{par}}<^>\sigma G,$$\end{document} which governs the partial projective sigma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document}-representations of G into algebras over a field kappa.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa .$$\end{document} Using the relation between partial projective representations and twisted partial actions we endow kappa par sigma G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\kappa }_{\textrm{par}}<^>\sigma G$$\end{document} with the structure of a crossed product by a twisted partial action of G on a commutative subalgebra of kappa par sigma G.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\kappa }_{\textrm{par}}<^>\sigma G.$$\end{document} Then, we use twisted partial group algebras to obtain a first quadrant Grothendieck spectral sequence converging to the Hochschild homology of the crossed product A & lowast;Theta G,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A*_{\Theta } G,$$\end{document} involving the Hochschild homology of A and the partial homology of G, where Theta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Theta }$$\end{document} is a unital twisted partial action of G on a kappa\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa $$\end{document}-algebra A with a kappa\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa $$\end{document}-based twist. An analogous third quadrant cohomological spectral sequence is also obtained. (AU)

FAPESP's process: 20/16594-0 - Non commutative rings and applications
Grantee:Francisco Cesar Polcino Milies
Support Opportunities: Research Projects - Thematic Grants
FAPESP's process: 22/12963-7 - (Co)homology and partial actions
Grantee:Emmanuel Jerez Usuga
Support Opportunities: Scholarships in Brazil - Doctorate