Advanced search
Start date
Betweenand


Spectral and Probabilistic Analysis of Third-Order Linear Abstract Differential Equations

Full text
Author(s):
Bezerra, Flank D. M. ; Lopez-Lazaro, Heraclio ; Takaessu, Carlos R.
Total Authors: 3
Document type: Journal article
Source: Journal of Dynamics and Differential Equations; v. N/A, p. 22-pg., 2025-03-17.
Abstract

In this paper we study the third-order abstract ordinary differential equations uttt+aAxutt+bAyut+c2Azu=0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} u_{ttt}+aA<^>{x}u_{tt}+bA<^>{y}u_t+c<^>2A<^>zu=0, \end{aligned}$$\end{document}where a,b >= 0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a,b\geqslant 0$$\end{document}, c not equal 0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c\ne 0$$\end{document}, 0 <= x<y <= z <= 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0\leqslant x<y\leqslant z\leqslant 1$$\end{document}, and A:D(A)subset of X -> X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A:D(A)\subset X \rightarrow X$$\end{document} is an unbounded, closed, densely defined, self-adjoint linear operator, which is defined on a separable Hilbert space X. We characterized the spectrum of the linear operator associated to the equation and analyzed for which coefficients a, b, c and for which powers x, y, z, this system can generate a strongly continuous semigroup, or an analytic semigroup, or does not generate anything. Since the coefficients have an important role when it comes to differential equations of third-order, we appeal to a tool from Galois theory, namely the discriminant of a polynomial. Finally, we compute the probabilities, in some sense, of this equation having a solution (strongly continuous semigroup) and being regular (analytic semigroup). (AU)

FAPESP's process: 22/02172-2 - Shadowing and hyperbolicity for quasilinear parabolic problems
Grantee:Carlos Roberto Takaessu Junior
Support Opportunities: Scholarships abroad - Research Internship - Doctorate
FAPESP's process: 21/01931-4 - Pullback attractor for non-linear parabolic equations with subdifferential principal part
Grantee:Heraclio Ledgar López Lázaro
Support Opportunities: Scholarships in Brazil - Post-Doctoral
FAPESP's process: 22/13001-4 - Finite fractal dimension for non-linear parabolic equations with subdifferential principal part
Grantee:Heraclio Ledgar López Lázaro
Support Opportunities: Scholarships abroad - Research Internship - Post-doctor
FAPESP's process: 20/14353-6 - Hyperbolicity for quasilinear parabolic problems
Grantee:Carlos Roberto Takaessu Junior
Support Opportunities: Scholarships in Brazil - Doctorate