Advanced search
Start date
Betweenand


Predicting temperatures in Brazilian states capitals via Machine Learning

Full text
Author(s):
da Silva, Sidney T. ; Gabrick, Enrique C. ; de Moraes, Ana Luiza R. ; Viana, Ricardo L. ; Batista, Antonio M. ; Caldas, Ibere L. ; Kurths, Juergen
Total Authors: 7
Document type: Journal article
Source: European Physical Journal-Special Topics; v. N/A, p. 20-pg., 2025-06-02.
Abstract

Climate change refers to substantial long-term variations in weather patterns. In this work, we employ a Machine Learning (ML) technique, the Random Forest (RF) algorithm, to forecast the monthly average temperature for Brazilian's states capitals (27 cities) and the whole country, from January 1961 to December 2022. To forecast the temperature at k-month, we consider as features in RF: (i) global emissions of carbon dioxide (CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document}), methane (CH4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_4$$\end{document}), and nitrous oxide (N2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document}O) at k-month; (ii) temperatures from the previous three months, i.e., (k-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(k-1)$$\end{document}, (k-2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(k-2)$$\end{document} and (k-3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(k-3)$$\end{document}-month; (iii) combination of i and ii. By investigating breakpoints in the times series, we discover that 24 cities and the gases present breakpoints in the 80's and 90's. After the breakpoints, we find an increase in the temperature and the gas emission. Thereafter, we separate the cities according to their geographical position and employ the RF algorithm to forecast the temperature from 2010-08 until 2022-12. Based on i, ii, and iii, we find that the three inputs result in a very precise forecast, with a normalized root mean squared error (NMRSE) less than 0.083 for the considered cases. From our simulations, the better forecasted region is Northeast through iii (NMRSE = 0.012). Furthermore, we also investigate the forecasting of anomalous temperature data by removing the annual component of each time series. In this case, the best forecasting is obtained with strategy i, with the best region being Northeast (NRMSE = 0.090). (AU)

FAPESP's process: 25/02318-5 - Dynamics of a host-vector model with nonlocal coupling
Grantee:Enrique Chipicoski Gabrick
Support Opportunities: Scholarships in Brazil - Post-Doctoral
FAPESP's process: 22/13761-9 - Complex Systems Dynamics
Grantee:Iberê Luiz Caldas
Support Opportunities: Research Grants - Visiting Researcher Grant - Brazil
FAPESP's process: 18/03211-6 - Non linear dynamics
Grantee:Iberê Luiz Caldas
Support Opportunities: Research Projects - Thematic Grants
FAPESP's process: 24/14478-4 - Machine Learning in Complex Systems
Grantee:Iberê Luiz Caldas
Support Opportunities: Research Grants - Visiting Researcher Grant - Brazil
FAPESP's process: 24/05700-5 - Non linear dynamics
Grantee:Iberê Luiz Caldas
Support Opportunities: Research Projects - Thematic Grants