Advanced search
Start date
(Reference retrieved automatically from Web of Science through information on FAPESP grant and its corresponding number as mentioned in the publication by the authors.)

Isochronal synchronization in networks and chaos-based TDMA communication

Full text
Grzybowski, J. M. V. ; Macau, E. E. N. ; Yoneyama, T.
Total Authors: 3
Document type: Journal article
Source: European Physical Journal-Special Topics; v. 223, n. 8, p. 1447-1463, JUN 2014.
Web of Science Citations: 1

Pairs of delay-coupled chaotic systems were shown to be able to achieve isochronal synchronization under bidirectional coupling and self-feedback. Such identical-in-time behavior was demonstrated to be stable under a set of conditions and to support simultaneous bidirectional communication between pairs of chaotic oscillators coupled with time-delay. More recently, it was shown that isochronal synchronization can emerge in networks with several hundreds of oscillators, which allows its exploitation for communication in distributed systems. In this paper, we introduce a conceptual framework for the application of isochronal synchronization to TDMA communication in networks of delay-coupled chaotic oscillators. On the basis of the stable and identical-in-time behavior of delay-coupled chaotic systems, the chaotic dynamics of distributed oscillators is used to support and sustain coordinate communication among nodes over the network. On the basis of the unique features of chaotic systems in isochronal synchronization, the chaotic signals are used to timestamp clock readings at the physical layer such that logical clock synchronization among the nodes (a prerequisite for TDMA) can be exploited using the same basic structure. The result is a standalone network communication scheme that can be advantageously applied in the context of ad-hoc networks or alike, especially short-ranged ones that yield low values of time-delay. As explored to its depths in practical implementations, this conceptual framework is argued to have potential to provide gain in simplicity, security and efficiency in communication schemes for autonomous/standalone network applications. (AU)

FAPESP's process: 11/50151-0 - Dynamical phenomena in complex networks: fundamentals and applications
Grantee:Elbert Einstein Nehrer Macau
Support type: Research Projects - Thematic Grants