Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

The relevance of feature selection methods to the classification of obsessive compulsive disorder based on volumetric measures

Texto completo
Autor(es):
Trambaiolli, Lucas R. ; Biazoli, Jr., Claudinei E. ; Balardin, Joana B. ; Hoexter, Marcelo Q. ; Sato, Joao R.
Número total de Autores: 5
Tipo de documento: Artigo Científico
Fonte: Journal of Affective Disorders; v. 222, p. 49-56, NOV 2017.
Citações Web of Science: 4
Resumo

Background: Magnetic resonance images (MRI) show detectable anatomical and functional differences between individuals with obsessive-compulsive disorder (OCD) and healthy subjects. Moreover, machine learning techniques have been proposed as tools to identify potential biomarkers and, ultimately, to support clinical diagnosis. However, few studies to date have investigated feature selection (FS) influences in OCD MRI-based classification. Methods: Volumes of cortical and subcortical structures, from MRI data of 38 OCD patients (split into two groups according symptoms severity) and 36 controls, were submitted to seven feature selection algorithms. FS aims to select the most relevant and less redundant features which discriminate between two classes. Then, a classification step was applied, from which the classification performances before and after different FS were compared. For the performance evaluation, leave-one-subject-out accuracies of Support Vector Machine classifiers were considered. Results: Using different FS algorithms, performance improvement was achieved for Controls vs. All OCD discrimination (19.08% of improvement reducing by 80% the amount of features), Controls vs. Low OCD (20.10%, 75%), Controls vs. High OCD (17.32%, 85%) and Low OCD vs. High OCD (10.53%, 75%). Furthermore, all algorithms pointed out classical cortico-striato-thalamo-cortical circuitry structures as relevant features for OCD classification. Limitations: Limitations include the sample size and using only filter approaches for FS. Conclusions: Our results suggest that FS positively impacts. OCD classification using machine-learning techniques. Complementarily, FS algorithms were able to select biologically plausible features automatically. (AU)

Processo FAPESP: 15/17406-5 - Decodificação emocional e neuromodulação do córtex prefrontal com registros simultâneo NIRS-EEG
Beneficiário:Lucas Remoaldo Trambaiolli
Modalidade de apoio: Bolsas no Brasil - Doutorado
Processo FAPESP: 13/10498-6 - Aprendizado de máquina em neuroimagem: desenvolvimento de métodos e aplicações clínicas em transtornos psiquiátricos
Beneficiário:João Ricardo Sato
Modalidade de apoio: Auxílio à Pesquisa - Regular
Processo FAPESP: 13/16864-4 - Capsulotomia ventral por raios gama com lesões únicas bilaterais e estimulação encefálica profunda no TOC: avaliação da eficácia, eventos adversos e alterações no funcionamento cerebral
Beneficiário:Marcelo Queiroz Hoexter
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado
Processo FAPESP: 11/21357-9 - Investigação de circuitos neuronais e marcadores biológicos envolvidos no transtorno obsessivo-compulsivo por meio de paradigmas comportamentais de medo e ansiedade
Beneficiário:Eurípedes Constantino Miguel Filho
Modalidade de apoio: Auxílio à Pesquisa - Temático