Busca avançada
Ano de início
Entree


Predicting dielectric properties of fruit juices at 915 and 2450 MHz using machine learning and physicochemical measurements

Texto completo
Autor(es):
Cavalcanti, Rodrigo Nunes ; Barbosa, Vitor Pereira ; Gut, Jorge Andrey Wilhelms ; Tadini, Carmen Cecilia
Número total de Autores: 4
Tipo de documento: Artigo Científico
Fonte: MEASUREMENT: FOOD; v. 14, p. 14-pg., 2024-06-01.
Resumo

Microwave-assisted thermal processing can provide superior quality for fruit-based products when compared to conventional thermal processing. Understanding the temperature-dependent dielectric properties of liquid foods is needed for the analysis and optimization of the microwave applicator chamber since they govern the heating rate and temperature distribution. While literature offers correlations for specific products, there is a scarcity of methods capable of accommodating variability in composition or predicting behavior for broader product groups. In this study, we measured the dielectric properties (dielectric constant and loss factor) of eight fruit juices (passion fruit, melon, pineapple, cashew, orange, lemon, acerola, and guava) using an open-ended coaxialline technique for temperatures ranging from 5 to 90 degrees C at commercial frequencies of 915 and 2450 MHz, alongside electrical conductivity. These properties were successfully correlated with the temperature for each individual juice; then, machine learning techniques (random forest, gradient boosting machine, and multilayer perceptron) were used to predict the properties of this diverse group of eight juices based on various physicochemical measurements. These techniques revealed temperature and electrical conductivity as the most critical predictors, while total solids, pH, acidity, ashes, and select color parameters also emerged as significant variables. These findings demonstrate that the integration of physicochemical analyses with machine learning tools offers an objective approach to correlate and predict dielectric properties for a group of food products, facilitating adjustments in product composition without additional measurements, thus enhancing the efficiency and accuracy of microwave-assisted thermal processing simulations and optimizations. (AU)

Processo FAPESP: 13/07914-8 - FoRC - Centro de Pesquisa em Alimentos
Beneficiário:Bernadette Dora Gombossy de Melo Franco
Modalidade de apoio: Auxílio à Pesquisa - Centros de Pesquisa, Inovação e Difusão - CEPIDs
Processo FAPESP: 15/25697-0 - Avaliação do processo térmico contínuo por micro-ondas de alimentos líquidos
Beneficiário:Rodrigo Nunes Cavalcanti
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado
Processo FAPESP: 17/09730-2 - Investigação dos efeitos não-térmicos do aquecimento por micro-ondas de sistemas modelo e sucos de fruta: determinação de mudanças na conformação e estrutura molecular de enzimas endógenas
Beneficiário:Rodrigo Nunes Cavalcanti
Modalidade de apoio: Bolsas no Exterior - Estágio de Pesquisa - Pós-Doutorado
Processo FAPESP: 12/04073-0 - Determinação experimental de propriedades dielétricas de alimentos líquidos e pastosos visando o tratamento térmico contínuo por tecnologia de micro-ondas
Beneficiário:Carmen Cecilia Tadini
Modalidade de apoio: Auxílio à Pesquisa - Regular