Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Periodic orbits, invariant tori, and cylinders of Hamiltonian systems near integrable ones having a return map equal to the identity

Texto completo
Autor(es):
Llibre, Jaume [1] ; Martins, Ricardo Miranda [2] ; Teixeira, Marco Antonio [2]
Número total de Autores: 3
Afiliação do(s) autor(es):
[1] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Catalonia - Spain
[2] Univ Estadual Campinas, Dept Matemat, BR-13083859 Campinas, SP - Brazil
Número total de Afiliações: 2
Tipo de documento: Artigo Científico
Fonte: Journal of Mathematical Physics; v. 51, n. 8 AUG 2010.
Citações Web of Science: 3
Resumo

Generically the return map of an integrable Hamiltonian system with two degrees of freedom in a Hamiltonian level foliated by invariant tori is a twist map. If we perturb such integrable Hamiltonian system inside the class of Hamiltonian systems with two degrees of freedom, then the Poincare-Birkhoff theorem allows to determine which periodic orbits of the integrable can be prolonged to the perturbed one, and the KAM theory provides sufficient conditions in order that some invariant tori persist under sufficiently small perturbations. If some power of this return map is the identity, then in general for these degenerate Hamiltonian systems we cannot study which periodic orbits of the integrable can be prolonged to the perturbed one, or if some invariant tori persist. This paper studies the perturbation of integrable Hamiltonian systems with two degrees of freedom having some power of the return map equal to the identity. We show with two different models a way to study the prolongation of periodic orbits and of invariant tori or cylinders filled with periodic orbits for such kind of Hamiltonian systems. The main tool in this study is the averaging theory. (C) 2010 American Institute of Physics. {[}doi:10.1063/1.3477937] (AU)

Processo FAPESP: 07/06896-5 - Geometria de sistemas de controle, sistemas dinâmicos e estocásticos
Beneficiário:Luiz Antonio Barrera San Martin
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 07/05215-4 - Estrutura Hamiltoniana de campos reversíveis em torno de pontos de equilíbrio elípticos em 4D e 6D
Beneficiário:Ricardo Miranda Martins
Modalidade de apoio: Bolsas no Brasil - Doutorado