Abstract
In this project we propose to establish a collaboration between the Universities of São Paulo, Nottingham and Birmingham, aimed at investigating informational and thermodynamic aspects of quantum systems described by continuous variables and their applications to quantum technologies. In particular, the proposal will focus on the quantification of irreversibility phenomena in non-equilibrium continuous variable systems, encompassing concrete models of light-matter interaction and the role played by different nonclassical resources, such as squeezing and quantum correlations, in their characterisation. Fundamental limits on the performance of nanoscale thermal machines, such as heat engines and refrigerators in the presence of non-equilibrium reservoirs, will be studied theoretically and tested experimentally. In particular, the project will develop a proof-of-concept implementation of a ``quantum tricycle'', a device which can function as a refrigerator or a heat engine, connected to a compact source of squeezed light. The extent to which nonclassical fluctuations due to squeezing may enhance the performance of such a device beyond classical limitations will be assessed in detail. While progressing towards this goal, the project will deliver a number of theoretical advances on timely problems at the boundaries between quantum information, quantum optics, and thermodynamics. (AU)
Articles published in Agência FAPESP Newsletter about the research grant: |
More itemsLess items |
TITULO |
Articles published in other media outlets ( ): |
More itemsLess items |
VEICULO: TITULO (DATA) |
VEICULO: TITULO (DATA) |