Advanced search
Start date
Betweenand

Numerical solution nematic liquid crystal

Grant number: 07/07038-2
Support Opportunities:Scholarships in Brazil - Doctorate
Start date: January 01, 2008
End date: August 31, 2011
Field of knowledge:Engineering - Mechanical Engineering - Transport Phenomena
Principal Investigator:Murilo Francisco Tome
Grantee:Pedro Alexandre da Cruz
Host Institution: Instituto de Ciências Matemáticas e de Computação (ICMC). Universidade de São Paulo (USP). São Carlos , SP, Brazil
Associated research grant:04/16064-9 - Mechanics of non-stationary fluids: applications in aeronautics and rheology, AP.TEM
News published in Agência FAPESP Newsletter about the scholarship:
More itemsLess items
Articles published in other media outlets ( ):
More itemsLess items
VEICULO: TITULO (DATA)
VEICULO: TITULO (DATA)

Scientific publications
(References retrieved automatically from Web of Science and SciELO through information on FAPESP grants and their corresponding numbers as mentioned in the publications by the authors)
CRUZ, PEDRO A.; TOME, MURILO F.; STEWART, IAIN W.; MCKEE, SEAN. A numerical method for solving the dynamic three-dimensional Ericksen-Leslie equations for nematic liquid crystals subject to a strong magnetic field. Journal of Non-Newtonian Fluid Mechanics, v. 165, n. 3-4, p. 143-157, . (07/07038-2, 04/16064-9)
CRUZ, PEDRO A.; TOME, MURILO F.; STEWART, IAIN W.; MCKEE, SEAN. Numerical solution of the Ericksen-Leslie dynamic equations for two-dimensional nematic liquid crystal flows. Journal of Computational Physics, v. 247, p. 109-136, . (07/07038-2, 04/16064-9)
MOMPEAN, G.; THAIS, L.; TOME, M. F.; CASTELO, A.. Numerical prediction of three-dimensional time-dependent viscoelastic extrudate swell using differential and algebraic models. COMPUTERS & FLUIDS, v. 44, n. 1, p. 68-78, . (07/07038-2, 04/16064-9)
Academic Publications
(References retrieved automatically from State of São Paulo Research Institutions)
CRUZ, Pedro Alexandre da. Numerical solution of nematic liquid crystals flows. 2011. Doctoral Thesis - Universidade de São Paulo (USP). Instituto de Ciências Matemáticas e de Computação (ICMC/SB) São Carlos.