Advanced search
Start date
Betweenand


Study of electrocomunication in gymnotus carapo and gnathonemus petersii for long time using realistic stimulation protocols

Full text
Author(s):
Caroline Garcia Forlim
Total Authors: 1
Document type: Doctoral Thesis
Press: São Paulo.
Institution: Universidade de São Paulo (USP). Instituto de Física (IF/SBI)
Defense date:
Examining board members:
Reynaldo Daniel Pinto; Angel Ariel Caputi Cavalli; Carla Goldman; Leonardo Paulo Maia; Coraci Pereira Malta
Advisor: Reynaldo Daniel Pinto
Abstract

Bioloelectrogenesis is known since ancient times. Weakly electric fish are a wonderful model in Neuroethology because they produce and sense eletric fields. These unique features allow non invasive experiments to access complex spatio-temporal signals involved in 2 tasks called electrocommunication and electrolocation. Electrolocation is the ability to see the surrounding areas /objects by analyzing changes in the fish\'s own electric field and electrocommunication is the ability to identify conspecifics, fight for dominance etc. In this last task fish have their electric field distorted by conspecifics\' eletric organ discharges. Usually, within species, pulse-type weakly electric fish discharge pulses with similar waveform and the amplitude of the pulse depends on the distance to the recording electrodes being very difficult to measure the discharges in freely swimming animals, specially when 2 or more animals are interacting. For these reasons, most studies found in the literature are done with restrained animals or in shallow tanks. The most commom stimuli used are square/sine waves or very short pre-recorded discharges in classic protocol where the stimuli do not depend on the fish\'s activity. To overcome these issues trying to perform more naturalistic experiments, we developed experimental setups to record the electric and motor behavior in freely pulse-type electric fish for long periods. Our setups have also the advantage of being easy to adapt making possible to study several species. We performed real time experiments with realistic electric and light stimuli using dynamic clamp techniques adapted to Neuroethology. We show both classic unidirectional protocols as well as bidirectional closed loop interaction, taking into account the fish\'s dynamic activity. Analyzes based on Information Theory revealed that the entropy of the electric organ discharges are correlated to the their movement. We performed experiments using the setups and techniques mentioned before in 2 species that have evolved independently: G. Carapo (Gymnotidae) from South America and G. petersii (Mormyridae) from Africa. We show evidence of real communication and we study the inter pulse discharge probability in different behavioral circumstances. One specie showed a long transient behavior when introduced in new environment, hence, the traditional experiments with restrained animals might not be suitable to study natural behavior. Our results show several evidences that the fish can distinguish between realist stimuli from conspecifics and random ones, that there are 2 values of echo response instead of 1, demonstrating the importance of our new setup and protocols. We could also show that closed loop protocols were more effective to stimulate and interact with the fish\'s activity and that the animals are able to control their motor and electric behavior avoiding possibly harmful stimulation. (AU)

FAPESP's process: 08/06529-5 - Electrocommunication in weakly electric fish from the Gymnotus carapo species - an application of Information Theory
Grantee:Caroline Garcia Forlim
Support Opportunities: Scholarships in Brazil - Doctorate