Advanced search
Start date
Betweenand


Genomic and epigenomic alterations in the anatomopathological and cognitive manifestations of Alzheimer\'s disease

Full text
Author(s):
Darine Christina Maia Villela
Total Authors: 1
Document type: Doctoral Thesis
Press: São Paulo.
Institution: Universidade de São Paulo (USP). Instituto de Biociências (IBIOC/SB)
Defense date:
Examining board members:
Carla Rosenberg; Carla Sustek D'Angelo; Wilson Jacob Filho; Fernando Kok; Angela Maria Vianna Morgante
Advisor: Carla Rosenberg
Abstract

Alzheimer\'s disease (AD) is the most common form of dementia in the population, corresponding to 50-60% of all cases. Although clinical diagnosis seems to be accurate, the definitive diagnosis of the disease can only be made by a post mortem neuropathological exam that certifies the presence of the two hallmarks of AD: the accumulation of extracellular senile plaques containing β-amyloid (Aβ) and the intracellular neurofibrillary tangles containing hyperphosphorylated tau protein. Four genes are known to be involved in the etiology of AD, three of them (APP, PSEN1 and PSEN2) are associated to the familial form of the disease, which show autosomal dominant inheritance and correspond to the more severe and rare type of AD. Despite many genome wide association studies (GWAS), APOE still remains the only unequivocal genetic risk factor associated to the multifactorial form of AD. The discoveries from GWAS using SNPs collectively explain only a small percentage of heritable variation that may contribute in AD risk. Currently, new approaches have been used to investigate the genetic basis of the phenotypical variability inheritance that can influence the susceptibility of complex diseases. The important role of DNA copy number variation (CNV) has been demonstrated by several studies over the last years and shows that genomic imbalances may also significantly contribute to resistance or susceptibility to various complex diseases. Additionally, there is now increasing interest in exploring how epigenetic modifications, in particular DNA methylation, could influence complex diseases etiology. Thus, the major aim of this work were to investigate two aspects related to the multifactorial form of AD: (1) identification of rare CNVs, using array-CGH, that could contribute to the development of the disease, and (2) analysis of the DNA methylation pattern in frontal cortex of individuals with AD. In our study, we identified 6 rare CNVs with relevant gene content to the investigated phenotype. Two distinct subjects with AD from our casuistic presented microduplications in genes that encode different subunits of the same type of Ca2+ voltage channel, the L-type. Furthermore, among the other selected genes, four are involved in different inflammatory process and one encodes the nicotinamide phosphoribosyltransferase enzyme, important mediator of nicotinamide adenine dinucleotide (NAD) biosynthesis. The implication of a possible involvement of Ca2+ intracellular signaling mediators and NAD biosynthesis pathway in the etiology of AD was also reinforced by our analysis of DNA methylation pattern. Interestingly, two important genes, one to intracellular Ca2+ homeostasis and the other to NAD biosynthesis pathway presented CpGs sites differently methylated in the AD subjects (AU)

FAPESP's process: 10/15503-0 - Genomic imbalances on the anatomopathological and cognitive manifestations of Alzheimer’s Disease
Grantee:Darine Christina Maia Villela
Support Opportunities: Scholarships in Brazil - Doctorate