Advanced search
Start date
Betweenand


Internal energy and electromagnetic wave scattering by spheres or cylinders: Fano resonances and their applications to metamaterials

Full text
Author(s):
Tiago José Arruda
Total Authors: 1
Document type: Doctoral Thesis
Press: Ribeirão Preto.
Institution: Universidade de São Paulo (USP). Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto (PCARP/BC)
Defense date:
Examining board members:
Alexandre Souto Martinez; Celso Jorge Villas Bôas; Miled Hassan Youssef Moussa; Reginaldo de Jesus Napolitano; Felipe Arruda de Araujo Pinheiro
Advisor: Alexandre Souto Martinez; Felipe Arruda de Araujo Pinheiro
Abstract

Electromagnetic wave scattering by single particles with both shapes and optical properties arbitrary finds applications in several areas of knowledge. Usually, the electromagnetic scattering is investigated via measured quantities in the far-field region. However, for inhomogeneous particles, resonances in scattering cross sections may not correspond to the electromagnetic field enhancement in the vicinity of a particle (near-field). This effect can be induced in dielectric nanoparticles with plasmonic coatings, and it has recently been explained in terms of the Fano resonance. The Fano resonance results from the interference between a non-resonant electromagnetic mode (background or continuous) and a resonant discrete mode (localized plasmon resonance), leading to an asymmetric lineshape. To understand how the surface modes in the near-field are connected to the cross section resonances, functionals of the electromagnetic fields within scatterers or in their vicinity are required. In this study, we calculate the electromagnetic energy inside scatterers in both cylindrical and spherical geometries. We obtain a connection between the internal energy and the scattering quantities in the far-field via absorption cross section and energy conservation. We apply our results to dispersive metamaterials, studying scattering properties of coated and chiral spheres in the negative refraction regime, and coated cylinders under oblique incidence of radiation. By the electromagnetic energy inside particles, we demonstrate new off-resonance field enhancement effects and provide analytical tools to analyze these resonances in both single and multiple scattering regimes. (AU)

FAPESP's process: 10/10052-0 - Internal energy and electromagnetic wave scattering by spheres or cylinders: Fano resonances and their applications to metamaterials
Grantee:Tiago José Arruda
Support Opportunities: Scholarships in Brazil - Doctorate