Advanced search
Start date
Betweenand


Marine natural products: isolation and identification of unknown metabolites from endophytic fungi and cyanobacteria through chemical epigenetic elicitation and dereplication via molecular networking

Full text
Author(s):
Rafael de Felício
Total Authors: 1
Document type: Doctoral Thesis
Press: Ribeirão Preto.
Institution: Universidade de São Paulo (USP). Faculdade de Ciências Farmacêuticas de Ribeirão Preto (PCARP/BC)
Defense date:
Examining board members:
Hosana Maria Debonsi; Angela Regina Araujo; Ricardo Vessecchi Lourenço; Daniela Barretto Barbosa Trivella
Advisor: Hosana Maria Debonsi; William Henry Gerwick
Abstract

Marine natural products are pointed out as one of the most important sources of bioactive compounds for drug discovery. In this environment, organisms are in constantly interaction ecological through the production of secondary metabolites. Endophytic fungi and cyanobacteria represent groups of microorganisms that perform biosynthesis of substances with unique chemical features and potent biological activities. However, when removed from their natural habitat, these microbial beings generally lose their metabolic capacity through a phenomenon called gene silencing, in which biosynthetic genes are no longer transcribed due to reasons still undetermined. This genetic mechanism is brokered, among other factors, by the enzyme DNA methyltransferase (DNA-MT) and histone deacetylase (HDAC). Thus, their inhibitors have been used successfully to promote the elicitation of substances that would not be produced under laboratory conditions. Another important approach in the natural products research field have been dereplication based on the fragmentation (MS/MS) for the identification of substances or analogues. The molecular networking is a new approach in which data from mass spectrometry are grouped according to the similarities between the patterns of fragmentation, forming families of molecules, allowing rapid visualization of the chemical profile of several samples simultaneously. Thus, this work presents the isolation and identification of novel metabolites from endophytic fungi and cyanobacteria originating from the marine environment. For this propose, epigenetic elicitation techniques were used in both groups of organisms and the molecular networks via dereplication was used in cyanobacteria. Endophytic fungi associated with red seaweed Bostrychia tenella were subjected to chemical and epigenetic studies. Xylaria sp. and Nigrospora oryzae strains were cultured in solid medium rice, resulting in isolation of substance of cytochalasin D and a potentially novel derivative of griseofulvin. Penicillium decaturense strain was grown in PDB liquid medium resulting in the isolation of 10,11- deidrocurvularina and possible analogues. Experiments with epigenetic inhibitors (sodium butyrate and procaine) promoted the modulation of the chemical profile of this strain, to stimulate the production of metabolites not expressed under normal culture conditions. Moreover, Acremonium sp. produced various substances when grown in liquid medium under the influence of Czapek procaine, one of novel and potentially derived from the class of metabolites brevianamides. Organic fractions of the cyanobacteria Schizothrix sp., collected in Panama, were analized by LC-MS/MS and the data generated were used to create molecular networks. This study resulted in the identification of metabolites barbamide, hectochlorin, curacins A and D, curazole malyngamide D acetate, dolastatin 10 and carmaphycin B. Also, analogs of curazole, dolastatin 10 and carmaphycins A and B have been proposed. Cyanobacteria Moorea producens JHB, collected in Jamaica, was grown under the influence of sodium butyrate, and produced two new proposed metabolites in accordance with the fragmentation data as being derived from jamaicamide and hectochlorin, in a sort of crossed biosynthesis. Therefore, this work corroborates marine endophytic fungi and cyanobacteria as promising for exploration of secondary metabolism. (AU)

FAPESP's process: 10/17178-9 - Marine natural products: isolation and identification of unknown metabolites from endophytic fungi and cyanobacteria through chemical epigenetic elicitation and dereplication via molecular networking
Grantee:Rafael de Felício
Support Opportunities: Scholarships in Brazil - Doctorate