Advanced search
Start date
Betweenand


Use of clear-cutting mosaic to reduce hydrological effects on forest plantations

Full text
Author(s):
Lara Gabrielle Garcia
Total Authors: 1
Document type: Master's Dissertation
Press: Piracicaba.
Institution: Universidade de São Paulo (USP). Escola Superior de Agricultura Luiz de Queiroz (ESALA/BC)
Defense date:
Examining board members:
Sílvio Frosini de Barros Ferraz; Samuel Beskow; Rafael Mingoti
Advisor: Sílvio Frosini de Barros Ferraz
Abstract

The expansion of areas of planted forests shows possible effects they have on water resources. Due to the characteristics of accelerated growth, commercial reforestations have high rates of evapotranspiration. Although planted forests are not considered water users, their consumption modifies water production in the watershed. Seeking to understand this scenario, the objective of this study was to identify alternatives to clear-cutting in mosaic that can be used to mitigate the effects of planted forests in water resources. Variables of intensity and spatial configuration of clear-cutting and its effects obtained through rain-flow simulations were tested in the experimental watershed of Itatinga. The study was divided into two parts, the first consisted of the analysis of consumption through the flow permanence curve in different scenarios of cut intensity, and the second was characterized by hydrological simulation of distributed variable cutting scenarios both in intensity and in location. The results were used to compare with the minimum flow rates of reference (Q7.10 and Q90) to quantify water consumption of forests over time, measuring the relationship between consumption and minimum reference flow. The results showed that when fully covered with forest, water consumption was always beyond the recommended, and as the simulated cut of the vegetation cover was enhanced (until 100% cutting), consumption values dropped. After 50 percent of cutting, runoff remained below two rates of minimum flow reference analyzed. In the second part of the study, the scenarios of intensity and location of cuts (30, 50 and 70% of cut in downstream and upstream) were compared with reference - complete forest cover - and the results were analyzed in terms of total runoff, peak flow and volume of events. It was also simulated a scenario for the analysis of the effects of riparian vegetation on the reduction of impacts caused by the clear-cutting of the planted forest. The effects of different intensities of clear-cutting are related to the size of the event of rain, because they showed significant differences for smaller rain events, however, no differences in the intensities were observed for greater events (precipitation above 15 mm). The location of the cut in downstream scenarios resulted at peak flow and volume larger than the reference scenario for the same cut intensity. When the cuts were made in upstream, the results did not differ significantly from the reference scenario in any percentage of cut, except for the rain size between 4 and 8 mm. Simulations of the effects of riparian forest showed that when they are kept along the river, the vegetation decreases the direct runoff, however, this effect depends on the intensity of the rain event, not being significant for large events. The use of data allowed to conclude that the cut in mosaic is a tool that could be used in the management of planted forests, as it decreases consumption through intensity and mitigates the effects of increased runoff due to the location of the cut. (AU)

FAPESP's process: 12/07428-3 - Multi-scale assessment of mosaic clear-cutting effects on stream flow regime in forest plantation areas
Grantee:Lara Gabrielle Garcia
Support Opportunities: Scholarships in Brazil - Master