Advanced search
Start date
Betweenand


Characterization of properties of fine recycled aggregates and its influence on mortar rheological behavior.

Full text
Author(s):
Gustav Hawlitschek
Total Authors: 1
Document type: Master's Dissertation
Press: São Paulo.
Institution: Universidade de São Paulo (USP). Escola Politécnica (EP/BC)
Defense date:
Examining board members:
Carina Ulsen; Mônica Batista Leite; Rafael Giuliano Pileggi
Advisor: Carina Ulsen
Abstract

The construction industry consumes an enormous amount of mineral raw materials and consequently also generates lots of waste, known as construction and demolition waste (CDW). In Brazil, it is estimated that over 70 million tons of CDW are generated per year, which is equivalent to the fourth position in national ranking of mineral commodities production. Recycling of CDW, in Brazil and in other countries, basically involves crushing and screening stages. Few plants uses mineral processing for the separation of inorganic porous phases, responsible for many limitations on recycled aggregates application as construction material. Recent studies have proven the effectiveness of mineral beneficiation in the production of low porosity recycled aggregates. However, application in mortar and concrete is still not recommended nor regulated, mainly by the absence of characterization procedures of generated products. In this context, this research evaluates the mercury intrusion porosity technique for characterization of recycled fine aggregates and the influence of this parameter on the rheological behavior of mortars. Additionally, the rheological behavior of mortars composed with fine aggregates with different characteristics (morphology and porosity) are also studied. Recycled sands with three different porosities and three commercial sands (natural or produced by rocks crushing) with different shapes were used. The sands were characterized and used on mortars composition, which were analyzed in fresh and hardened state. The mercury intrusion porosimetry proved to be a faster and accurate method in determining the porosity of recycled sands. However, the operations conditions and experimental procedure for the characterization of fine particulate materials, mainly below 300 m, plays a major role for reproducible results. The results showed that despite the different sands features (porosity and shape), they may have similar rheological behavior as a function of water content and additives added to the mortars. Aggregates porosity influences directly the mechanical properties of the mortar, the higher the water consumption and air content, the higher the porosity in the hardened state and consequently the lower the compression resistance. Thus, the establishment of the equilibrium between the investments in mineral processing technologies to reduce the aggregates porosity or the tolerance for increasing water and additives consumption is more related to the economic viability than technically. An alternative to mineral beneficiation after crushing would be the partial replacement of natural aggregates by recycled ones, this will lead to a lower porosity system with partial incorporation of recycled aggregates. (AU)

FAPESP's process: 12/10953-2 - CHARACTERIZATION OF FINE RECYCLED AGGREGATES AND IT'S INFLUENCE ON THE RHEOLOGICAL BEHAVIOR
Grantee:Gustav Hawlitschek
Support Opportunities: Scholarships in Brazil - Master