Morphofunctional bases of feeding and the trophic ... - BV FAPESP
Advanced search
Start date
Betweenand


Morphofunctional bases of feeding and the trophic role of Lychnorhiza lucerna

Full text
Author(s):
Renato Mitsuo Nagata
Total Authors: 1
Document type: Doctoral Thesis
Press: São Paulo.
Institution: Universidade de São Paulo (USP). Instituto de Biociências (IBIOC/SB)
Defense date:
Examining board members:
André Carrara Morandini; Alvaro Esteves Migotto; Miodeli Nogueira Júnior
Advisor: André Carrara Morandini
Abstract

During the past three decades, efforts have been focused in order to understand the ecological role of scyphomedusae, due to population increases around the world. Despite Rhizostomeae medusae cause the most intense recently reported blooms, almost nothing is known about their feeding mechanisms, their trophic impacts and their ecological role. The goal of this thesis was to describe the morphological and functional bases of feeding in Lychnorhiza lucerna Haeckel, 1880 (Rhizostomeae), in order to understand its predatory role and trophic interactions. The project investigated: i- the early development of L. lucerna, focusing on swimming-feeding mechanisms; ii- the diet, prey selectivity, and the potential predatory impact of this species, and (iii) the trophic structure of a relatively pristine ecosystem, in order to understand trophic relationships between gelatinous zooplankton species and fish. The methodological approach included: i- high-speed videography for quantification of biomechanical parameters of swimming medusae at a range of developmental stages; ii- samplings of animals and plankton in surface waters for quantification of gut contents, prey selectivity and feeding rates along the coast of São Paulo and Paraná states; and ii- stable isotope analyses (&delta;13C and &delta;15N) in tissues of consumers (mesozooplankton, gelatinous, other invertebrates and fish) in the estuary of Cananéia, São Paulo. The early ontogeny of ephyrae involves changes in bell and development of filter-feeding oral arms. In the fluid environment around the ephyrae (<6mm bell diameter) the viscous forces are relatively important (Re <100). Therefore, the flows generated by bell pulsations quickly dissipate before reaching the distal surfaces of the oral arms. The transport mechanism via bell pulsations was not observed until ontogenetic increase in the strength of the pulsations (>10mm) providing an environment dominated by inertial forces (Re> 300). In adults bell pulsations produce vortices that induce flows through oral arms, which retain particles by sticking and sieving mechanisms. Rhizostomeae jellyfish have the most robust bell pulsations among scyphomedusae, but maximum velocities of the vortices (&sim;10cm s-1) of L. lucerna (<70mm) are still 3 to 5 times slower than escape velocity of calanoid copepods. Although this difference may suggest success for copepods to escape, both video sequences, and gut contents revealed that these prey can be captured and eaten at similar proportions as their field density. Copepods may fail to detect the predator, being transported against prey capture structures, even if they perform velocities that usually allow escaping. The interaction of prey with vortices is complex and prey may jump at angles that result in captures by oral arms. Through the analysis of gut contents (N=40) 43 taxa were found composing the diet of L. lucerna, of which, copepods comprised &sim;80% of numerical abundance. This medusa is a generalist predator, since its diet was mostly similar to field mesozooplankton availability. Its ability to capture evasive calanoid copepods (Paracalanus spp. and Acartia spp.) increases with medusa size, as a consequence of increasingly stronger feeding currents. Feeding rates ranged from 110 to 102871 copepods eaten medusa&minus;1 day&minus;1. At these rates, it was estimated that an aggregation of L. lucerna reported in northern Argentina (14 ind. 100 m&minus;3) could consume 6-12% of the copepods standing stock day&minus;1, demonstrating the potential predatory impact of the species\' blooms. Population increases of L. lucerna would certainly be detrimental to the recruitment of many fishes that inhabit estuarine coastal waters when juveniles. Stable isotope analyses revealed that the isotopic niche occupied by L. lucerna and by other gelatinous zooplanktivores, overlaps with niches of fishes, and other consumers of similar feeding habits. Little is known about compensatory dynamics in subtropical coastal ecosystems. However, due to its biomass, generalist feeding habits, and predatory impact, L. lucerna is a strong contender to replace depleted fish stocks of similar trophic niche. Currently there is no evidence that L. lucerna populations are increasing. The information presented here represents an advance in the knowledge of the species, its interactions, which are key in order to understand the consequences of its blooms and of possible population increases. However, many other information addressing other aspects (e.g. reproduction) and at population level (e.g. seasonality, biomass) are needed for a more complete understanding of the species role in the ecosystem. (AU)

FAPESP's process: 11/00436-8 - Morphofunctional bases of feeding and the trophic role of Lychnorhiza lucerna (Scyphozoa, Rhizostomeae)
Grantee:Renato Mitsuo Nagata
Support Opportunities: Scholarships in Brazil - Doctorate