Advanced search
Start date
Betweenand


Vascular efects induced by calcium ionophore A23187 in renal hypertensive rat aorta

Full text
Author(s):
Prycila Rodrigues Feitoza
Total Authors: 1
Document type: Master's Dissertation
Press: Ribeirão Preto.
Institution: Universidade de São Paulo (USP). Faculdade de Ciências Farmacêuticas de Ribeirão Preto (PCARP/BC)
Defense date:
Examining board members:
Lusiane Maria Bendhack; Aurea Elizabeth Linder; Angelina Zanesco
Advisor: Lusiane Maria Bendhack
Abstract

The vascular endothelium plays a pivotal role in the vascular tone due to the release of relaxing factors (EDRFs) and contractile factors (EDCFs). Nitric oxide (NO) is one of the most important EDRFs involved in the vasodilation and it is produced by the NO-synthases (NOS). eNOS is a constitutive isoform and its activity is dependent of the transient calcium. Besides eNOS, other important enzymes are modulated by Ca2+ such as phospholipase A2 (cPLA2). This enzyme converts membrane phospholipids to araquidonic acid, responsible for the formation of the prostanoids prostaciclin (PGI2) and thromboxane (TXA2). Endothelial dysfunction is related to the decreased NO bioavailability and increased production of EDCFs. It is present in several cardiovascular disorders like hypertension. Endothelial dysfunction is a multifactorial proccess that is also caused by the increased production of reactive oxygen species (ROS). Increased cytosolic calcium concentration ([Ca2+]c) is related to augmented ROS and EDCFs production. In the present study, we have used the calcium ionophore A23187 in order to evaluate the altered cellular signaling caused by [Ca2+]c in a receptor activation-independent way that occurs in hypertension. This work aimed to study the vascular responses stimulated by A23187 in normotensive rat (2K) aorta and in renal hypertensive (2K-1C) rat aorta. We have verified that A23187 induces vasodilator effect dependent on the production of NO in 2K and 2K- 1C rat aortas. The vascular relaxation was abolished by the non-selective NOS inhibitor (L-NAME) and by the endothelium removal. In 2K-1C but not in 2K rat aortas, PGI2 contributes to He vasodilator effect induced by A23187. PGI2 production is greater in 2K-1C than in 2K rat aortas, which suggests that PGI2 activates TP receptors inducing contraction. The contractile effect of A23187 is endotheliumdependent in 2K rat aorta. However, in 2K-1C intact-endothelium aortas, the contractile effect of A23187 is impaired. The anti-contractile effect is due to increased NO production that inhibits the contractile response to A23187. The contractile response induced by A23187 is dependent of the prostanoid production like TXA2 and PGI2 that activate TP receptors because this response is inhibited by the cyclooxygenase inhibitor (ibuprofen). In addition, this effect was abolished by the TP receptor antagonist (SQ29548). TXA2 production was stimulated with A23187 in 2K and 2K-1C rat aorta, which was greater in 2K-1C than in 2K rat aorta. We have also observed that catalase blunted the contractile response induced by A23187. These results suggest that hydrogen peroxide positively modulates A23187-induced contractile response. (AU)

FAPESP's process: 13/01579-2 - Cellular mechanisms involved in vasorelaxant effect from calcium ionophore in aorta of renal hypertensive rats
Grantee:Prycila Rodrigues Feitoza
Support Opportunities: Scholarships in Brazil - Master