Advanced search
Start date
Betweenand


Artificial neural networks applied to distance protection

Full text
Author(s):
Mário Oleskovicz
Total Authors: 1
Document type: Doctoral Thesis
Press: São Carlos.
Institution: Universidade de São Paulo (USP). Escola de Engenharia de São Carlos (EESC/SBD)
Defense date:
Examining board members:
Denis Vinicius Coury; André Carlos Ponce de Leon Ferreira de Carvalho; Geraldo Roberto Martins da Costa; Milton Itsuo Samesima; Eduardo César Senger
Advisor: Denis Vinicius Coury
Abstract

This work presents an alternative Artificial Neural Network (ANN) approach to simulate a complete scheme for a transmission line protection. From this application, we intend to obtain a complete model to detect the fault, to classify the fault type occurred and to locate it on the protection zones as quickly as possible when compared to conventional approaches. The voltage and current sampled values from the electric power system are analyzed and they are generated by computational simulation using the Alternative Transients Program (ATP) software. In order to perform the simulation, the study was subdivided into different neural network modules for fault detection, fault classification as well as fault location. It should be pointed out that the modules training objective was to obtain the appropriate fixed ANNs architectures (software NeuralWorks), which represent all stored knowledge from the protection system operation. With these fixed architectures, by an appropriate computational algorithm implemented in a C code language, all expected correct responses described above for different operation conditions can be obtained. The results obtained by application of this alternative protection approach, show that the global performance of the ANNs architecture was highly satisfactory and suitable to a practical application. It should be emphasized that the scheme proposed is highly precise with high speed of response, showing desirable characteristics to a modern protection system. It should be mentioned that this research was developed in cooperation with the Department of Electronic and Electrical Engineering - University of Bath/England. (AU)